32 research outputs found

    No evidence of increased mutations in the germline of a group of British nuclear test veterans

    Get PDF
    Availability of data and materials: The dataset generated during this current study are available https://dataview.ncbi.nlm.nih.gov/object/PRJNA788492?reviewer=t65okctpc20o0jfr3n2rmf5n50Ethical Approval and consent to participate: The GCFT study was conducted in accordance with UK ethical framework and approved by the UK Health Research Authority (17/LO/0273).Copyright © The Author(s) 2022. The potential germline effects of radiation exposure to military veterans present at British nuclear tests in Australia and the South Pacific is of considerable interest. We analyzed germline mutations in 60 families of UK military personnel comprising 30 control and 30 nuclear test veterans (NTV). Using whole-genome sequencing we studied the frequency and spectra of de novo mutations to investigate the transgenerational effect of veterans’ (potential) exposure to radiation at nuclear bomb test sites. We find no elevation in total de novo single nucleotide variants, small insertion-deletions, structural variants or clustered mutations among the offspring of nuclear test veterans compared to those of control personnel. We did observe an elevated occurrence of single base substitution mutations within mutation signature SBS16, due to a subset of NTV offspring. The relevance of this elevation to potential exposure of veteran fathers and, future health risks, require further investigation. Overall, we find no evidence of increased mutations in the germline of a group of British nuclear test veterans. ISRCTN Registry 17461668.Nuclear Community Charity Fund (NCCF) through funds received by The Armed Forces Covenant Fund Trust under the Aged Veterans Fund Grant AVF16 (AM, MS, CG, CR, JP, RA, YD)

    Occupational, domestic and environmental mesothelioma risks in the British population: a case–control study

    Get PDF
    We obtained lifetime occupational and residential histories by telephone interview with 622 mesothelioma patients (512 men, 110 women) and 1420 population controls. Odds ratios (ORs) were converted to lifetime risk (LR) estimates for Britons born in the 1940s. Male ORs (95% confidence interval (CI)) relative to low-risk occupations for >10 years of exposure before the age of 30 years were 50.0 (25.8–96.8) for carpenters (LR 1 in 17), 17.1 (10.3–28.3) for plumbers, electricians and painters, 7.0 (3.2–15.2) for other construction workers, 15.3 (9.0–26.2) for other recognised high-risk occupations and 5.2 (3.1–8.5) in other industries where asbestos may be encountered. The LR was similar in apparently unexposed men and women (∼1 in 1000), and this was approximately doubled in exposed workers' relatives (OR 2.0, 95% CI 1.3–3.2). No other environmental hazards were identified. In all, 14% of male and 62% of female cases were not attributable to occupational or domestic asbestos exposure. Approximately half of the male cases were construction workers, and only four had worked for more than 5 years in asbestos product manufacture

    Occupational cancer in Britain: Statistical methodology

    Get PDF
    An approach using the attributable fraction (AF) has been developed to estimate the current burden of occupational cancer in Britain. The AF combines the relative risk (RR) associated with exposure with the proportion exposed. For each cancer–exposure pairing, the RR is selected from key epidemiological literature such as an industry, or population-based study, meta-analysis or review. The CARcinogen EXposure (CAREX) database provides point estimates for the number of workers exposed to a range of carcinogens; alternative sources are national surveys such as the Labour Force Survey and Census of Employment. The number of workers exposed are split between high and low exposure levels matched to appropriate RRs from the literature. The relevant period for cancer development during which exposure occurred is defined as the risk exposure period (REP). Estimation of the numbers ever exposed over the REP takes into account the changes in the number of people employed in primary and manufacturing industry and service sectors in Britain where appropriate, and adjustment is made for staff turnover over the period and for life expectancy. National estimates of the population ever of working age during the REP are used for the proportion denominator. Strategies have been developed to combine exposure AFs correctly while avoiding double counting and minimising bias. The AFs are applied to national cancer deaths and registrations to obtain occupation-attributable cancer numbers. The methods are adaptable for other diseases and other geographies, and are also adaptable to more sophisticated modelling if better exposure and dose–response data are available
    corecore