14 research outputs found

    Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this study was to estimate the effect of supplementation with <it>Saccaromyces cerevisiae (SC</it>) (Yea-Sacc<sup>® </sup>1026) on milk production, metabolic parameters and the resumption of ovarian activity in early lactation dairy cows.</p> <p>Methods</p> <p>The experiment was conducted during 2005/2006 in a commercial tied-house farm with an average of 200 milking Estonian Holstein Friesian cows. The late pregnant multiparous cows (n = 46) were randomly divided into two groups; one group received 10 g yeast culture from two weeks before to 14 weeks after calving. The groups were fed a total mixed ration with silages and concentrates. Milk recording data and blood samples for plasma metabolites were taken. Resumption of luteal activity was determined using milk progesterone (P<sub>4</sub>) measurements. Uterine bacteriology and ovarian ultrasonography (US) were performed and body condition scores (BCS) and clinical disease occurrences were recorded. For analysis, the statistical software Stata 9.2 and R were used to compute Cox proportional hazard and linear mixed models.</p> <p>Results</p> <p>The average milk production per cow did not differ between the groups (32.7 ± 6.4 vs 30.7 ± 5.3 kg/day in the SC and control groups respectively), but the production of milk fat (<it>P </it>< 0.001) and milk protein (<it>P </it>< 0.001) were higher in the SC group. There was no effect of treatment on BCS. The analysis of energy-related metabolites in early lactation showed no significant differences between the groups. In both groups higher levels of β-hydroxybutyrate (BHB) appeared from days 14 to 28 after parturition and the concentration of non-esterfied fatty acid (NEFA) was higher from days 1–7 post partum (PP). According to US and P<sub>4 </sub>results, all cows in both groups ovulated during the experimental period. The resumption of ovarian activity (first ovulations) and time required for elimination of bacteria from the uterus did not differ between the groups.</p> <p>Conclusion</p> <p>Supplementation with SC had an effect on milk protein and fat production, but did not influence the milk yield. No effects on PP metabolic status, bacterial elimination from the uterus nor the resumption of ovarian activity were found.</p

    The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria

    No full text
    F(420) is a low-potential redox cofactor that mediates the transformations of a wide range of complex organic compounds. Considered one of the rarest cofactors in biology, F(420) is best known for its role in methanogenesis and has only been chemically identified in two phyla to date, the Euryarchaeota and Actinobacteria. In this work, we show that this cofactor is more widely distributed than previously reported. We detected the genes encoding all five known F(420) biosynthesis enzymes (cofC, cofD, cofE, cofG and cofH) in at least 653 bacterial and 173 archaeal species, including members of the dominant soil phyla Proteobacteria, Chloroflexi and Firmicutes. Metagenome datamining validated that these genes were disproportionately abundant in aerated soils compared with other ecosystems. We confirmed through high-performance liquid chromatography analysis that aerobically grown stationary-phase cultures of three bacterial species, Paracoccus denitrificans, Oligotropha carboxidovorans and Thermomicrobium roseum, synthesized F(420), with oligoglutamate sidechains of different lengths. To understand the evolution of F(420) biosynthesis, we also analyzed the distribution, phylogeny and genetic organization of the cof genes. Our data suggest that although the F(o) precursor to F(420) originated in methanogens, F(420) itself was first synthesized in an ancestral actinobacterium. F(420) biosynthesis genes were then disseminated horizontally to archaea and other bacteria. Together, our findings suggest that the cofactor is more significant in aerobic bacterial metabolism and soil ecosystem composition than previously thought. The cofactor may confer several competitive advantages for aerobic soil bacteria by mediating their central metabolic processes and broadening the range of organic compounds they can synthesize, detoxify and mineralize
    corecore