10 research outputs found

    Decompressive cervical laminectomy and lateral mass screw-rod arthrodesis. Surgical analysis and outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluates the outcome and complications of decompressive cervical Laminectomy and lateral mass screw fixation in 110 cases treated for variable cervical spine pathologies that included; degenerative disease, trauma, neoplasms, metabolic-inflammatory disorders and congenital anomalies.</p> <p>Methods</p> <p>A retrospective review of total 785 lateral mass screws were placed in patients ages 16-68 years (40 females and 70 males). All cases were performed with a polyaxial screw-rod construct and screws were placed by using Anderson-Sekhon trajectory. Most patients had 12-14-mm length and 3.5 mm diameter screws placed for subaxial and 28-30 for C1 lateral mass. Screw location was assessed by post operative plain x-ray and computed tomography can (CT), besides that; the facet joint, nerve root foramen and foramen transversarium violation were also appraised.</p> <p>Results</p> <p>No patients experienced neural or vascular injury as a result of screw position. Only one patient needed screw repositioning. Six patients experienced superficial wound infection. Fifteen patients had pain around the shoulder of C5 distribution that subsided over the time. No patients developed screw pullouts or symptomatic adjacent segment disease within the period of follow up.</p> <p>Conclusion</p> <p>decompressive cervical spine laminectomy and Lateral mass screw stabilization is a technique that can be used for a variety of cervical spine pathologies with safety and efficiency.</p

    Artificial atlanto-odontoid joint replacement through a transoral approach

    No full text
    Resection of the odontoid process and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurological complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1–C2 fusion. However, this results in considerable loss of rotation function of the atlantoaxial complex. From the viewpoint of retaining the rotation function and providing stability, we designed an artificial atlanto-odontoid joint based on anatomical measurements of 50 pairs of dry atlantoaxial specimens by digital calipers and 10 fresh cadaveric specimens by microsurgical techniques. The metal-on-metal titanium alloy joint has an arc-shaped atlas component, and a hollow cylindrical bushing into which fits a rotation axle of an inverted v-shaped axis component and is implanted through a transoral approach. After the joint was implanted onto specimens with anterior decompression, biomechanical tests were performed to compare the stability parameters in the intact state, after decompression, after artificial joint replacement, and after fatigue test. Compared to the intact state, artificial joint replacement resulted in a significant decrease in the range of motion (ROM) and neutral zone (NZ) during flexion, extension, and lateral bending (P < 0.001); however, with regard to axial rotation, there was no significant difference in ROM (P = 0.405), a significant increase in NZ (P = 0.008), and a significant decrease in stiffness (P = 0.003). Compared to the decompressed state, artificial joint replacement resulted in a significantly decreased ROM (P ≀ 0.021) and NZ (P ≀ 0.002) and a significantly increased stiffness (P < 0.001) in all directions. Following artificial joint replacement, there was no significant difference in ROM (P ≄ 0.719), NZ (P ≄ 0.580), and stiffness (P ≄ 0.602) in all directions before and after the fatigue test. The artificial joint showed no signs of wear and tear after the fatigue test. This artificial atlanto-odontoid joint may be useful in cases of odontoid resection due to malunion or nonunion of odontoid fracture, atraumatic odontoid fracture, irreducible atlas dislocation, posterior atlantoaxial subluxation, or congenital skull base abnormalities
    corecore