31 research outputs found
Fixed points and amenability in non-positive curvature
Consider a proper cocompact CAT(0) space X. We give a complete algebraic
characterisation of amenable groups of isometries of X. For amenable discrete
subgroups, an even narrower description is derived, implying Q-linearity in the
torsion-free case.
We establish Levi decompositions for stabilisers of points at infinity of X,
generalising the case of linear algebraic groups to Is(X). A geometric
counterpart of this sheds light on the refined bordification of X (\`a la
Karpelevich) and leads to a converse to the Adams-Ballmann theorem. It is
further deduced that unimodular cocompact groups cannot fix any point at
infinity except in the Euclidean factor; this fact is needed for the study of
CAT(0) lattices.
Various fixed point results are derived as illustrations.Comment: 33 page
Hierarchies and Ranks for Persistence Pairs
We develop a novel hierarchy for zero-dimensional persistence pairs, i.e.,
connected components, which is capable of capturing more fine-grained spatial
relations between persistence pairs. Our work is motivated by a lack of spatial
relationships between features in persistence diagrams, leading to a limited
expressive power. We build upon a recently-introduced hierarchy of pairs in
persistence diagrams that augments the pairing stored in persistence diagrams
with information about which components merge. Our proposed hierarchy captures
differences in branching structure. Moreover, we show how to use our hierarchy
to measure the spatial stability of a pairing and we define a rank function for
persistence pairs and demonstrate different applications.Comment: Topology-based Methods in Visualization 201
Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation
A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
A Poincaré-Bendixson theorem for meromorphic connections on compact Riemann surfaces
We shall prove a Poincaré–Bendixson theorem describing the asymptotic behavior of geodesics for a meromorphic connection on a compact Riemann surface. We shall also briefly discuss the case of non-compact Riemann surfaces, and study in detail the geodesics for a holomorphic connection on a complex torus