562 research outputs found
Cholesterol sensing by CD81 is important for hepatitis C virus entry
CD81 plays a role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus. Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81-cholesterol association, but had disparate effects on HCV, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified an allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol unbound) or closed (cholesterol bound) conformation. The open mutant of CD81 exhibited reduced receptor activity whereas the closed mutant was enhanced. These data are consistent with cholesterol switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81-partner networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry and CD81âs function as a molecular scaffold; these insights are relevant to CD81âs varied roles in health and disease
Sequential Effects in Judgements of Attractiveness: The Influences of Face Race and Sex
In perceptual decision-making, a personâs response on a given trial is influenced by their response on the immediately preceding trial. This sequential effect was initially demonstrated in psychophysical tasks, but has now been found in more complex, real-world judgements. The similarity of the current and previous stimuli determines the nature of the effect, with more similar items producing assimilation in judgements, while less similarity can cause a contrast effect. Previous research found assimilation in ratings of facial attractiveness, and here, we investigated whether this effect is influenced by the social categories of the faces presented. Over three experiments, participants rated the attractiveness of own- (White) and other-race (Chinese) faces of both sexes that appeared successively. Through blocking trials by race (Experiment 1), sex (Experiment 2), or both dimensions (Experiment 3), we could examine how sequential judgements were altered by the salience of different social categories in face sequences. For sequences that varied in sex alone, own-race faces showed significantly less opposite-sex assimilation (male and female faces perceived as dissimilar), while other-race faces showed equal assimilation for opposite- and same-sex sequences (male and female faces were not differentiated). For sequences that varied in race alone, categorisation by race resulted in no opposite-race assimilation for either sex of face (White and Chinese faces perceived as dissimilar). For sequences that varied in both race and sex, same-category assimilation was significantly greater than opposite-category. Our results suggest that the race of a face represents a superordinate category relative to sex. These findings demonstrate the importance of social categories when considering sequential judgements of faces, and also highlight a novel approach for investigating how multiple social dimensions interact during decision-making
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion
Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions
Background: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome- wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material.
Methods: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species.
Results: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice.
Conclusions: Plant-RRBS offers high-throughput and broad, genome- dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations
Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management
Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems
Uptake in cancer screening programmes:a priority in cancer control
Achieving adequate levels of uptake in cancer screening requires a variety of approaches that need to be shaped by the characteristics of both the screening programme and the target population. Strategies to improve uptake typically produce only incremental increases. Accordingly, approaches that combine behavioural, organisational and other strategies are most likely to succeed. In conjunction with a focus on uptake, providers of screening services need to promote informed decision making among invitees. Addressing inequalities in uptake must remain a priority for screening programmes. Evidence informing strategies targeting low-uptake groups is scarce, and more research is needed in this area. Cancer screening has the potential to make a major contribution to early diagnosis initiatives in the United Kingdom, and will best be achieved through uptake strategies that emphasise wide coverage, informed choice and equitable distribution of cancer screening services
Perceptual Other-Race Training Reduces Implicit Racial Bias
Background: Implicit racial bias denotes socio-cognitive attitudes towards other-race groups that are exempt from conscious awareness. In parallel, other-race faces are more difficult to differentiate relative to own-race faces â the ââOther-Race Effect.â â To examine the relationship between these two biases, we trained Caucasian subjects to better individuate other-race faces and measured implicit racial bias for those faces both before and after training. Methodology/Principal Findings: Two groups of Caucasian subjects were exposed equally to the same African American faces in a training protocol run over 5 sessions. In the individuation condition, subjects learned to discriminate between African American faces. In the categorization condition, subjects learned to categorize faces as African American or not. For both conditions, both pre- and post-training we measured the Other-Race Effect using old-new recognition and implicit racial biases using a novel implicit social measure â the ââAffective Lexical Priming Scoreâ â (ALPS). Subjects in the individuation condition, but not in the categorization condition, showed improved discrimination of African American faces with training. Concomitantly, subjects in the individuation condition, but not the categorization condition, showed a reduction in their ALPS. Critically, for the individuation condition only, the degree to which an individual subjectâs ALPS decreased was significantly correlated with the degree of improvement that subject showed in their ability to differentiate African American faces
Predictors of colorectal cancer screening in diverse primary care practices
BACKGROUND: To explain why rates of colorectal cancer (CRC) screening including fecal occult blood testing (FOBT), flexible sigmoidoscopy (FS), colonoscopy (CS), and barium enema (BE), are low, this study assessed determinants of CRC screening from medical records. METHODS: Data were abstracted from patients aged â„64 years selected from each clinician from 30 diverse primary care practices (n = 981). Measurements included the rates of annual FOBT, ever receiving FOBT, ever receiving FS/CS/BE under a combination variable, endoscopy/barium enema (EBE). RESULTS: Over five years, 8% had received annual FOBT, 53% had ever received FOBT and 22% had ever received EBE. Annual FOBT was negatively associated with female gender, odds ratio (OR) = .23; 95% confidence interval = .12â.44 and positively associated with routinely receiving influenza vaccine, OR = 2.55 (1.45â4.47); and more office visits: 3 to <5 visits/year, OR = 2.78 (1.41â5.51), and â„5 visits/year, OR = 3.35 (1.52-7.42). Ever receiving EBE was negatively associated with age â„75 years, OR = .66 (.46â.95); being widowed, OR = .59 (.38â.92); and positively associated with more office visits: 3 to <5 visits/year, OR = 1.83 (1.18â2.82) and â„5 visits/year, OR = 2.01 (1.14â3.55). CONCLUSION: Overall CRC screening rates were low, but were related to the number of primary care office visits. FOBT was related to immunization status, suggesting the possible benefit of linking these preventive services
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
- âŠ