211 research outputs found

    Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization

    Get PDF
    This work was supported in part by a Marie Curie CIG grant (PCIG14-GA-2013-631011 CSKFingerprints) and a BBSRC grant (BB/P006108/1). MCK is supported by a PhD studentship from the Life Sciences Initiative at QMUL

    Characterization of the Primo-Vascular System in the Abdominal Cavity of Lung Cancer Mouse Model and Its Differences from the Lymphatic System

    Get PDF
    Cancer growth and dissemination have been extensively studied for a long time. Nevertheless, many new observations on anatomy and histopathology of cancer events are still reported such as formation of a vasculogenic-like network inside aggressive tumors. In this research, new kinds of micro-conduits, named primo-vessels, were found inside the abdominal cavity of NCI-H460 lung cancer murine xenograft models. These vascular threads were largely distributed on the surfaces of various organs and were often connected to peritoneal tumor nodules. Histological and immunofluorescent investigations showed that the primo-vessels had characteristic features that were distinctively different from those of similar-looking lymphatic vessels. They had multiple channels surrounded with loose collageneous matrices, which is in contrast to the single-channel structure of other vascular systems. The rod-shaped nuclei aligned longitudinally along the channels were assumed to be the endothelial cells of the primo-vessels, but LYVE-1, a specific marker of lymphatics, was not expressed, which indicates a clear difference from lymphatic endothelial cells. Taken together these findings on and characterization of the novel threadlike vascular structures in cancer models may have important implications for cancer prognosis and for therapy

    Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    Get PDF
    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a long distance without significant decay due to material viscosity and/or cytosolic drag

    Cell-Cell Contact Preserves Cell Viability via Plakoglobin

    Get PDF
    Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols

    Tumor Cell Plasticity and Angiogenesis in Human Melanomas

    Get PDF
    Recent molecular studies provide evidence for a significant transcriptional plasticity of tumor cell subpopulations that facilitate an active contribution to tumor vasculature. This feature is accompanied by morphological changes both in vitro and in vivo. Herein, we investigated the morphological plasticity of tumor cells with special focus on vasculogenic mimicry and neovascularisation in human melanoma and mouse xenografts of human melanoma cell lines. In melanoma xenograft experiments, different vessel markers and green fluorescent protein expression were used to show how melanoma cells contribute to neovascularization. Additionally, we analyzed neovascularization in 49 primary melanomas and 175 melanoma metastases using immunostaining for blood (CD34) and lymphatic (D2–40) vessel-specific markers. We found significantly more lymphatic vessels in primary melanomas than in melanoma metastases (p<0.0001). In contrast to the near absence of lymphatic vessels within metastases, we found extensive blood micro-neovascularization. Blood micro-neovascularization was absent in micro metastases (less than 2 mm). A significant inverse correlation between Glut-1 expression (implying local hypoxia) and the presence of microvessels indicates their functional activity as blood vessels (p<0.0001). We suggest that the hypoxic microenvironment in metastases contributes to a phenotype switch allowing melanoma cells to physically contribute to blood vessel formation

    Cyclic stretch increases splicing noise rate in cultured human fibroblasts

    Get PDF
    BACKGROUND: Mechanical forces are known to alter the expression of genes, but it has so far not been reported whether they may influence the fidelity of nucleus-based processes. One experimental approach permitting to address this question is the application of cyclic stretch to cultured human fibroblasts. As a marker for the precision of nucleus-based processes, the number of errors that occur during co-transcriptional splicing can then be measured. This so-called splicing noise is found at low frequency in pre-mRNA splicing. FINDINGS: The amount of splicing noise was measured by RT-qPCR of seven exon skips from the test genes AATF, MAP3K11, NF1, PCGF2, POLR2A and RABAC1. In cells treated by altered uniaxial cyclic stretching for 18 h, a uniform and significant increase of splicing noise was found for all detectable exon skips. CONCLUSION: Our data demonstrate that application of cyclic stretch to cultured fibroblasts correlates with a reduced transcriptional fidelity caused by increasing splicing noise

    Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas

    Get PDF
    We have previously described a group of non-small cell lung carcinomas without morphological evidence of neo-angiogenesis. In these tumours neoplastic cells fill up the alveoli and the only vessels present appear to belong to the trapped alveolar septa. In the present study we have characterised the phenotype of the vessels present in these non-angiogenic tumours, in normal lung and in angiogenic non-small cell lung carcinomas. The vessels, identified by the expression of CD31, were scored as mature when expressing the epitope LH39 in the basal membrane and as newly formed when expressing αVβ3 on the endothelial cells and/or lacking LH39 expression. In the nine putative non-angiogenic cases examined, the vascular phenotype of all the vessels was the same as that of alveolar vessels in normal lung: LH39 positive and αVβ3 variable or negative. Instead in 104 angiogenic tumours examined, only a minority of vessels (mean 13.1%; range 0–60%) expressed LH39, while αVβ3 (in 45 cases) was strongly expressed on many vessels (mean 55.5%; range 5–90%). We conclude that in putative non-angiogenic tumours the vascular phenotype is that of normal vessels and there is no neo-angiogenesis. This type of cancer may be resistant to some anti-angiogenic therapy and different strategies need to be developed

    Retinoic Acid Mediates Regulation of Network Formation by COUP-TFII and VE-Cadherin Expression by TGFβ Receptor Kinase in Breast Cancer Cells

    Get PDF
    Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFβ signaling pathway were induced by RA, and specific inhibition of the TGFβ type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFβ pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA

    Effect of Cytoskeletal Disruption on Mechanotransduction of Hydrostatic Pressure by C3H10T1/2 Murine Fibroblasts

    Get PDF
    Cyclic hydrostatic pressure of physiological magnitude (< 10 MPa) stimulates chondrogenic differentiation of mesenchymal stem cells, but mechanotransduction mechanisms are not well understood. It was hypothesized that an intact cytoskeleton would be required for uninhibited mechanotransduction of hydrostatic pressure. Therefore we examined the effects of drugs which selectively interfere with actin and tubulin polymerization on pressure-induced upregulation of aggrecan and col2a1 (type II collagen) mRNA expression. C3H10T1/2 cells were cultured as pellets in either 4µM cytochalasin D or 4µM nocodazole and subjected to 3 days of cyclic hydrostatic compression (1 Hz, 5 MPa, 2 h per day). Phalloidin staining and indirect immunostaining with anti α-tubulin antibody confirmed disruption of microfilament and microtubule assemblies, respectively. Real time RT-PCR revealed that both drugs substantially lowered the basal level of aggrecan and col2a1 mRNA, but that neither drug prevented a pressure-stimulated increase in gene expression relative to the altered basal state. Thus upregulation of macromolecular gene expression by cyclic hydrostatic pressure did not require a completely intact cytoskeleton

    Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    Get PDF
    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies
    corecore