10 research outputs found

    Why Amphibians Are More Sensitive than Mammals to Xenobiotics

    Get PDF
    Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device

    Systemic proteasome inhibition triggers neurodegeneration in a transgenic mouse model expressing human α-synuclein under oligodendrocyte promoter: implications for multiple system atrophy

    Get PDF
    Multiple system atrophy (MSA) is a progressive late onset neurodegenerative α-synucleinopathy with unclear pathogenesis. Recent genetic and pathological studies support a central role of α-synuclein (αSYN) in MSA pathogenesis. Oligodendroglial cytoplasmic inclusions of fibrillar αSYN and dysfunction of the ubiquitin–proteasome system are suggestive of proteolytic stress in this disorder. To address the possible pathogenic role of oligodendroglial αSYN accumulation and proteolytic failure in MSA we applied systemic proteasome inhibition (PSI) in transgenic mice with oligodendroglial human αSYN expression and determined the presence of MSA-like neurodegeneration in this model as compared to wild-type mice. PSI induced open field motor disability in transgenic αSYN mice but not in wild-type mice. The motor phenotype corresponded to progressive and selective neuronal loss in the striatonigral and olivopontocerebellar systems of PSI-treated transgenic αSYN mice. In contrast no neurodegeneration was detected in PSI-treated wild-type controls. PSI treatment of transgenic αSYN mice was associated with significant ultrastructural alterations including accumulation of fibrillar human αSYN in the cytoplasm of oligodendroglia, which resulted in myelin disruption and demyelination characterized by increased g-ratio. The oligodendroglial and myelin pathology was accompanied by axonal degeneration evidenced by signs of mitochondrial stress and dysfunctional axonal transport in the affected neurites. In summary, we provide new evidence supporting a primary role of proteolytic failure and suggesting a neurodegenerative pathomechanism related to disturbed oligodendroglial/myelin trophic support in the pathogenesis of MSA

    Multiple system atrophy: the application of genetics in understanding etiology

    No full text

    Study of the leptonic decays of the Z0 boson

    No full text

    Study of hadronic decays of the Z0 boson

    No full text
    corecore