10 research outputs found

    Vaccinia Virus G8R Protein: A Structural Ortholog of Proliferating Cell Nuclear Antigen (PCNA)

    Get PDF
    BACKGROUND: Eukaryotic DNA replication involves the synthesis of both a DNA leading and lagging strand, the latter requiring several additional proteins including flap endonuclease (FEN-1) and proliferating cell nuclear antigen (PCNA) in order to remove RNA primers used in the synthesis of Okazaki fragments. Poxviruses are complex viruses (dsDNA genomes) that infect eukaryotes, but surprisingly little is known about the process of DNA replication. Given our previous results that the vaccinia virus (VACV) G5R protein may be structurally similar to a FEN-1-like protein and a recent finding that poxviruses encode a primase function, we undertook a series of in silico analyses to identify whether VACV also encodes a PCNA-like protein. RESULTS: An InterProScan of all VACV proteins using the JIPS software package was used to identify any PCNA-like proteins. The VACV G8R protein was identified as the only vaccinia protein that contained a PCNA-like sliding clamp motif. The VACV G8R protein plays a role in poxvirus late transcription and is known to interact with several other poxvirus proteins including itself. The secondary and tertiary structure of the VACV G8R protein was predicted and compared to the secondary and tertiary structure of both human and yeast PCNA proteins, and a high degree of similarity between all three proteins was noted. CONCLUSIONS: The structure of the VACV G8R protein is predicted to closely resemble the eukaryotic PCNA protein; it possesses several other features including a conserved ubiquitylation and SUMOylation site that suggest that, like its counterpart in T4 bacteriophage (gp45), it may function as a sliding clamp ushering transcription factors to RNA polymerase during late transcription

    Cdc7p-Dbf4p Regulates Mitotic Exit by Inhibiting Polo Kinase

    Get PDF
    Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint

    Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies

    Get PDF
    International audienceAbstractGastrointestinal disease caused by the apicomplexan parasite Cryptosporidium parvum is one of the most important diseases of young ruminant livestock, particularly neonatal calves. Infected animals may suffer from profuse watery diarrhoea, dehydration and in severe cases death can occur. At present, effective therapeutic and preventative measures are not available and a better understanding of the host–pathogen interactions is required. Cryptosporidium parvum is also an important zoonotic pathogen causing severe disease in people, with young children being particularly vulnerable. Our knowledge of the immune responses induced by Cryptosporidium parasites in clinically relevant hosts is very limited. This review discusses the impact of bovine cryptosporidiosis and describes how a thorough understanding of the host–pathogen interactions may help to identify novel prevention and control strategies

    Pathophysiologische Aspekte der Immunkomplexerkrankung

    No full text
    corecore