378 research outputs found

    Fluorescent Labeling of Collagen Production by Cells for Noninvasive Imaging of Extracellular Matrix Deposition.

    Get PDF
    Extracellular matrix (ECM) is an essential component of tissues and provides both integrity and biological cues for cells. Collagen is one of the major proteins found within the ECM and therefore is an essential component of all engineered tissues. Therefore, in this article, we present a method for the online real-time monitoring of collagen deposition in three-dimensional engineered constructs. This method revolves around modification of collagen through the addition of azide-L-proline to cell culture media. The incorporation of azide-L-proline into the neocollagen produced by cells can then be detected by reaction with 10 mM of a Click-IT Alexa Fluor 488 DIBO Alkyne. The reaction was shown as being specific to the collagen as little background staining was observed in cultures, which did not contain the modified proline, and the staining was also depleted after treatment with collagenase and colocalization of collagen type I staining by immunochemistry assay. Real-time online staining of collagen deposition was observed under different culture conditions without affecting proliferation. Collagen deposition was observed to be increased under mechanical stimulation; however, the localization varied across stimulation regimes. This is a new technique for real-time monitoring of cell-produced collagen and will be a valuable addition to the tissue engineering field

    Pluripotent stem cells and their dynamic niche

    Get PDF
    Cell-seeded implants are a regenerative medicine strategy that aims to replace injured tissue and restore tissue function. Pluripotent stem cells are promising cell candidates for the development of regenerative medicine therapies as they have the ability to self-renew and commit towards numerous cell types. In vivo, stem cells reside in a dynamic niche, a stem cell-specific microenvironment that possesses chemical, biological and mechanical cues, which drive the stem cell fate and renewal. The connection between stem cells and their niche is a two-way relationship consisting of both cell–cell interac‐tion and cell–extracellular matrix (ECM) interactions. An alternative regenerative medicine approach is the manipulation of the stem cell microenvironment. Hence, novel strategies have been developed including 3D biomaterials and bioreactor technologies providing topographical, chemical and mechanical cues to recreate the stem cell niche. Understanding the mechanisms controlling stem cell fate and the dynamic nature of thestem cell niche will enable researchers to replicate this stem cell-specific microenvironment, and therefore, harness and control the valuable attributes which stem cells possess. This chapter elucidates the importance of pluripotent stem cells and their dynamic niche in regenerative medicine. It further presents novel strategies to replicate chemical, topographical and mechanical stimuli which are essential for the regulation of stem cell fate and hence tissue regeneration

    Counting cell number in situ by quantification of dimethyl sulphide in culture headspace.

    Get PDF
    A novel, non-invasive technique is reported for determining the numbers of cells in a culture by quantifying dimethyl sulphide (DMS) in the culture headspace as produced by the cellular enzymatic reduction of dissolved dimethyl sulphoxide (DMSO). Measured DMS concentrations, as performed using selected ion flow tube mass spectrometry (SIFT-MS), in the headspace of 2D and 3D cultures of four cell lines, viz. HEK293 (kidney), MG63 (bone), hepG2 (liver) and CALU-1 (lung), linearly correlate with starting cell number. Clear differences in the rates of production of DMS by the four cell types in both the 2D and 3D situations are seen. This novel analytical technique for cell enumeration offers a significant contribution to quality assessment across cell-based research and industry, including analysis of large scale culture systems, and for routine cell biology research

    Flourescent, online monitoring of PLGA degradation for regenerative medicine applications

    Get PDF
    Degradable polymers such as poly(lactic-co-glycolic acid) (PLGA) are frequently chosen for tissue engineering, due to their ease of production, controllable degradation rates and Food and Drug Administration (FDA) approval. Within tissue engineering it is essential that the degradation profile of such biomaterials is understood and measured both in vitro and in vivo. The majority of techniques currently undertaken to study degradation are however destructive, leading to an over reliance on end point analysis. This study therefore defines a method of fluorescently tagging PLGA, via the addition of reactive amine groups and subsequent isothiocyanate reactions, with the purpose of monitoring degradation profiles through non-destructive techniques. The amine grafting and fluorescent labelling of the PLGA was confirmed using both X-ray photospectrometry and high performance liquid chromatography. The modification of the PLGA also had no significant effect on molecular weight or the hydrophilicity of the polymer. Both the release of fluorescent by-products and the changes in fluorescence retention within the modified PLGA were observed to be highly correlated to the changes in physical weight. This paper therefore demonstrates a novel method for the online and non-destructive monitoring of polymer degradation through the incorporation of a fluorescent marker, which can decrease the reliance on end point analysis and reduce the number of samples required both in vitro and in vivo

    Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells

    Get PDF
    Mechanical cues are employed to promote stem cell differentiation and functional tissue formation in tissue engineering and regenerative medicine. We have developed a Magnetic Force Bioreactor (MFB) that delivers highly targeted local forces to cells at a pico-newton level, utilizing magnetic micro- and nano-particles to target cell surface receptors. In this study, we investigated the effects of magnetically targeting and actuating specific two mechanical-sensitive cell membrane receptors-platelet-derived growth factor receptor α (PDGFRα) and integrin ανβ3. It was found that a higher mineral-to-matrix ratio was obtained after three weeks of magneto-mechanical stimulation coupled with osteogenic medium culture by initially targeting PDGFRα compared with targeting integrin ανβ3 and non-treated controls. Moreover, different initiation sites caused a differentiated response profile when using a 2-day-lagged magneto-mechanical stimulation over culture periods of 7 and 12 days). However, both resulted in statistically higher osteogenic marker genes expression compared with immediate magneto-mechanical stimulation. These results provide insights into important parameters for designing appropriate protocols for ex vivo induced bone formation via magneto-mechanical actuation

    Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering

    Get PDF
    Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation

    The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles.

    Get PDF
    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility
    corecore