6 research outputs found

    Food web persistence is enhanced by non-trophic interactions.

    Get PDF
    The strength of interspecific interactions is often proposed to affect food web stability, with weaker interactions increasing the persistence of species, and food webs as a whole. However, the mechanisms that modify interaction strengths, and their effects on food web persistence are not fully understood. Using food webs containing different combinations of predator, prey, and nonprey species, we investigated how predation risk of susceptible prey is affected by the presence of species not directly trophically linked to either predators or prey. We predicted that indirect alterations to the strength of trophic interactions translate to changes in persistence time of extinction-prone species. We assembled interaction webs of protist consumers and turbellarian predators with eight different combinations of prey, predators and nonprey species, and recorded abundances for over 130 prey generations. Persistence of predation-susceptible species was increased by the presence of nonprey. Furthermore, multiple nonprey species acted synergistically to increase prey persistence, such that persistence was greater than would be predicted from the dynamics of simpler food webs. We also found evidence suggesting increased food web complexity may weaken interspecific competition, increasing persistence of poorer competitors. Our results demonstrate that persistence times in complex food webs cannot be predicted from the dynamics of simplified systems, and that species not directly involved in consumptive interactions likely play key roles in maintaining persistence. Global species diversity is currently declining at an unprecedented rate and our findings reveal that concurrent loss of species that modify trophic interactions may have unpredictable consequences for food web stability

    Spider–Plant Interactions: An Ecological Approach

    No full text
    Spiders are among the most common animals in diverse terrestrial environments, and display a variety of lifestyles and foraging modes. This chapter represents an overview of our knowledge of spider–plant interactions. Spiders are strongly influenced by plant architecture, rather than being randomly distributed in the vegetation; structures such as rosette-shaped clusters of leaves or glandular trichomes are particularly common in plants that have associations with spiders. Spiders derive benefits from plants such as shelter and access to insect prey. In turn, they can protect plants against herbivory. However, they may also consume or deter pollinators, imposing a cost that can exceed their benefit to the plant. Specific spider–plant associations are mutualistic if spiders provide protective or nutritional benefits, thus improving plant fitness, and if plants provide shelter and suitable foraging sites to spiders. We examine several case studies of spiders living in association with plants, and describe spatial/temporal adaptations in spider–plant relationships
    corecore