64 research outputs found
Effectiveness of calf muscle stretching for the short-term treatment of plantar heel pain: a randomised trial
BACKGROUND: Plantar heel pain is one of the most common musculoskeletal disorders of the foot and ankle. Treatment of the condition is usually conservative, however the effectiveness of many treatments frequently used in clinical practice, including stretching, has not been established. We performed a participant-blinded randomised trial to assess the effectiveness of calf muscle stretching, a commonly used short-term treatment for plantar heel pain. METHODS: Ninety-two participants with plantar heel pain were recruited from the general public between April and June 2005. Participants were randomly allocated to an intervention group that were prescribed calf muscle stretches and sham ultrasound (n = 46) or a control group who received sham ultrasound alone (n = 46). The intervention period was two weeks. No participants were lost to follow-up. Primary outcome measures were 'first-step' pain (measured on a 100 mm Visual Analogue Scale) and the Foot Health Status Questionnaire domains of foot pain, foot function and general foot health. RESULTS: Both treatment groups improved over the two week period of follow-up but there were no statistically significant differences in improvement between groups for any of the measured outcomes. For example, the mean improvement for 'first-step' pain (0â100 mm) was -19.8 mm in the stretching group and -13.2 mm in the control group (adjusted mean difference between groups -7.9 mm; 95% CI -18.3 to 2.6). For foot function (0â100 scale), the stretching group improved 16.2 points and the control group improved 8.3 points (adjusted mean difference between groups 7.3; 95% CI -0.1 to 14.8). Ten participants in the stretching group experienced an adverse event, however most events were mild to moderate and short-lived. CONCLUSION: When used for the short-term treatment of plantar heel pain, a two-week stretching program provides no statistically significant benefit in 'first-step' pain, foot pain, foot function or general foot health compared to not stretching
Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response
Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γΎ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor
The aromatase inhibitor letrozole and inhibitors of insulin-like growth factor I receptor synergistically induce apoptosis in in vitro models of estrogen-dependent breast cancer
INTRODUCTION: Endocrine-dependent, estrogen receptor positive breast cancer cells proliferate in response to estrogens, synthesized by the cytochrome p450 aromatase enzyme. Letrozole is a potent nonsteroidal aromatase inhibitor that is registered for the treatment of postmenopausal women with advanced metastatic breast cancers and in the neoadjuvant, early, and extended adjuvant indications. Because crosstalk exists between estrogen receptor and insulin-like growth factor I receptor (IGF-IR), the effect of combining a selective IGF-IR inhibitor (NVP-AEW541) with letrozole was assessed in two independent in vitro models of estrogen-dependent breast cancer.
METHODS: MCF7 and T47D cells stably expressing aromatase (MCF7/Aro and T47D/Aro) were used as in vitro models of aromatase-driven breast cancer. The role of the IGF-IR pathway in breast cancer cells stimulated only by 17Ă-estradiol or androstenedione was assessed by proliferation assays. The combination of letrozole and NVP-AEW541 was assessed for synergy in inhibiting cell proliferation using Chou-Talalay derived equations. Finally, combination or single agent effects on proliferation and apoptosis were assessed using proliferation assays, flow cytometry, and immunoblotting.
RESULTS: Both MCF7 and T47D cells, as well as MCF7/Aro and T47D/Aro, exhibited sensitivity to inhibition of 17Ă-estradiol dependent proliferation by NVP-AEW541. Letrozole combined with NVP-AEW541 synergistically inhibited androstenedione-dependent proliferation in aromatase-expressing cells with combination index values of 0.6 or less. Synergistic combination effects correlated with higher levels of apoptosis as compared with cells treated with the single agent alone. Treatment with either agent also appeared to inhibit IGF-IR signalling via phosphoinositide 3-kinase. Notably, IGF-IR inhibition had limited effect on estrogen-dependent proliferation in the cell lines, but was clearly required for survival, suggesting that the combination of letrozole and IGF-IR inhibition sensitizes cells to apoptosis.
CONCLUSION: Inhibition of the IGF-IR pathway and aromatase was synergistic in two independent estrogen-dependent in vitro models of breast cancer. Moreover, synergism of NVP-AEW541 and letrozole correlated with induction of apoptosis, but not cell cycle arrest, in the cell lines tested. Combination of IGF-IR inhibitors and letrozole may hold promise for the treatment of patients with estrogen-dependent breast cancers
Optical Environmental Sensing in Wireless Smart Meter Network
In recent years, the traditional power grid is undergoing a profound revolution due to the advent and development of smart grid. Many hard and challenging issues of the traditional grid such as high maintenance costs, poor scalability, low efficiency, and stability can be effectively handled and solve in the wireless smart grid (WSG) by utilizing the modern wireless sensor technology. In a WSG, data are collected by sensors at first and then transmitted to the base station through the wireless network. The control centre is responsible for taking actions based on this received data. Traditional sensors are failing to provide accurate and reliable data in WSG, and optical fiber based sensor are emerging as an obvious choice due to the advancement of optical fiber sensing technology, accuracy, and reliability. This paper presents a WSG platform integrated with optic fiber-based sensors for real-time monitoring. To demonstrate the validity of the concept, fresh water sensing of refractive index (RI) was first experimented with an optical fiber sensor. The sensing mechanism functions with the reflectance at the fiberâs interface where reflected spectraâs intensity is registered corresponding to the change of RI in the ambient environment. The achieved sensitivity of the fabricated fiber sensor is 29.3 dB/RIU within the 1.33â1.46 RI range. An interface between the measured optical spectra and the WSG is proposed and demonstrated, and the data acquired is transmitted through a network of wireless smart meters
Recommended from our members
Search for high-mass resonances decaying into Ï-lepton pairs in pp collisions at â s = 7TeV
- âŠ