17 research outputs found

    Valorizing the 'Irulas' traditional knowledge of medicinal plants in the Kodiakkarai Reserve Forest, India

    Get PDF
    A mounting body of critical research is raising the credibility of Traditional Knowledge (TK) in scientific studies. These studies have gained credibility because their claims are supported by methods that are repeatable and provide data for quantitative analyses that can be used to assess confidence in the results. The theoretical importance of our study is to test consensus (reliability/replicable) of TK within one ancient culture; the Irulas of the Kodiakkarai Reserve Forest (KRF), India. We calculated relative frequency (RF) and consensus factor (Fic) of TK from 120 Irulas informants knowledgeable of medicinal plants. Our research indicates a high consensus of the Irulas TK concerning medicinal plants. The Irulas revealed a diversity of plants that have medicinal and nutritional utility in their culture and specific ethnotaxa used to treat a variety of illnesses and promote general good health in their communities. Throughout history aboriginal people have been the custodians of bio-diversity and have sustained healthy life-styles in an environmentally sustainable manner. However this knowledge has not been transferred to modern society. We suggest this may be due to the asymmetry between scientific and TK, which demands a new approach that considers the assemblage of TK and scientific knowledge. A greater understanding of TK is beginning to emerge based on our research with both the Irulas and Malasars; they believe that a healthy lifestyle is founded on a healthy environment. These aboriginal groups chose to share this knowledge with society-at-large in order to promote a global lifestyle of health and environmental sustainability

    Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana)

    Get PDF
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic E. coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analyzed. Among hundreds of compounds, only a few homologous compounds were identified that contained isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole containing analogs, sulfonamides, furanones, flavanones, and known to possess broad-spectrum antimicrobial properties, and possess anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs
    corecore