485 research outputs found
Use of intravitreal bevacizumab in a patient with a Von Hippel-Lindau-associated retinal haemangioblastoma of the optic nerve head: a case report
<p>Abstract</p> <p>Introduction</p> <p>The optimum management of a capillary haemangioblastoma affecting the optic nerve head is not clear. A number of treatment modalities have been used to treat the tumours and their consequences. Ocular haemangioblastomas express high levels of vascular endothelial growth factor and levels have been correlated with tumour growth and activity. Treatment with vascular endothelial growth factor inhibitors would therefore seem a logical approach.</p> <p>Case presentation</p> <p>We describe a 23-year-old man with an exophytic capillary haemangioblastoma of the optic nerve head that was treated with intravitreal bevacizumab injections.</p> <p>Conclusion</p> <p>Unfortunately, treatment with intravitreal bevacizumab on three occasions had no effect on either tumour size or exudation in this patient.</p
Fish-hook injuries: a risk for fishermen
Fishing is one of the best known and practiced human activities. However, you should remember that, when casting the hook from the riverbank or grasping it to add bait, fishermen run a real risk of injury if the hook punctures the skin
The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy
BACKGROUND: In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. METHODS/PRINCIPAL FINDINGS: VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. CONCLUSIONS/SIGNIFICANCE: CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy
Betacellulin Induces Increased Retinal Vascular Permeability in Mice
BACKGROUND: Diabetic maculopathy, the leading cause of vision loss in patients with type 2 diabetes, is characterized by hyper-permeability of retinal blood vessels with subsequent formation of macular edema and hard exudates. The degree of hyperglycemia and duration of diabetes have been suggested to be good predictors of retinal complications. Intervention studies have determined that while intensive treatment of diabetes reduced the development of proliferative diabetic retinopathy it was associated with a two to three-fold increased risk of severe hypoglycemia. Thus we hypothesized the need to identify downstream glycemic targets, which induce retinal vascular permeability that could be targeted therapeutically without the additional risks associated with intensive treatment of the hyperglycemia. Betacellulin is a 32 kD member of the epidermal growth factor family with mitogenic properties for the retinal pigment epithelial cells. This led us to hypothesize a role for betacellulin in the retinal vascular complications associated with diabetes. METHODS AND FINDINGS: In this study, using a mouse model of diabetes, we demonstrate that diabetic mice have accentuated retinal vascular permeability with a concomitant increased expression of a cleaved soluble form of betacellulin (s-Btc) in the retina. Intravitreal injection of soluble betacellulin induced retinal vascular permeability in normoglycemic and hyperglycemic mice. Western blot analysis of retinas from patients with diabetic retinopathy showed an increase in the active soluble form of betacellulin. In addition, an increase in the levels of A disintegrin and metalloproteinase (ADAM)-10 which plays a role in the cleavage of betacellulin was seen in the retinas of diabetic mice and humans. CONCLUSIONS: These results suggest that excessive amounts of betacellulin in the retina may contribute to the pathogenesis of diabetic macular edema
Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study
<p>Abstract</p> <p>Background</p> <p>There is strong and consistent evidence that oxidative stress is crucially involved in the development of atherosclerotic vascular disease. Overproduction of reactive oxygen species (ROS) in mitochondria is an unifying mechanism that underlies micro- and macrovascular atherosclerotic disease. Given the central role of mitochondria in energy and ROS production, mitochondrial DNA (mtDNA) is an obvious candidate for genetic susceptibility studies on atherosclerotic processes. We therefore examined the association between mtDNA haplogroups and coronary artery disease (CAD) as well as diabetic retinopathy.</p> <p>Methods</p> <p>This study of Middle European Caucasians included patients with angiographically documented CAD (n = 487), subjects with type 2 diabetes mellitus with (n = 149) or without (n = 78) diabetic retinopathy and control subjects without clinical manifestations of atherosclerotic disease (n = 1527). MtDNA haplotyping was performed using multiplex PCR and subsequent multiplex primer extension analysis for determination of the major European haplogroups. Haplogroup frequencies of patients were compared to those of control subjects without clinical manifestations of atherosclerotic disease.</p> <p>Results</p> <p>Haplogroup T was significantly more prevalent among patients with CAD than among control subjects (14.8% vs 8.3%; p = 0.002). In patients with type 2 diabetes, the presence of diabetic retinopathy was also significantly associated with a higher prevalence of haplogroup T (12.1% vs 5.1%; p = 0.046).</p> <p>Conclusion</p> <p>Our data indicate that the mtDNA haplogroup T is associated with CAD and diabetic retinopathy in Middle European Caucasian populations.</p
Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy
Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders
Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema
<p>Abstract</p> <p>Background</p> <p>To assess the efficacy of the intravitreal (IVT) injection of Triamcinolone Acetonide (TA) as compared to posterior subtenon (SBT) capsule injection for the treatment of cystoid diabetic macular edema.</p> <p>Methods</p> <p>Fourteen patients with type II diabetes mellitus and on insulin treatment, presenting diffuse cystoid macular edema were recruited. Before TA injection all focal lakes were treated by laser photocoagulation. In the same patients one eye was assigned to 4 mg IVT injection of TA and the fellow eye was then treated with 40 mg SBT injection of TA. Before and one, three and six months after treatment we measured visual acuity with ETDRS chart as well as thickness of the macula with optical coherence tomography (OCT) and intraocular pressure (IOP).</p> <p>Results</p> <p>The eyes treated with an IVT injection displayed significant improvement in visual acuity, both after one (0.491 ± 0.070; p < 0.001) and three months (0.500 ± 0.089; p < 0.001) of treatment. Significant improvement was displayed also in eyes treated with an SBT injection, again after one (0.455 ± 0.069; p < 0.001) and three months (0.427 ± 0.065; p < 0.001). The difference between an IVT injection (0.809 ± 0.083) and SBT injection (0.460 ± 0.072) becomes significant six months after the treatment (p < 0.001).</p> <p>Macular thickness of the eyes treated with IVT injection was significantly reduced both after one (222.7 ± 13.4 μm; p < 0.001) and after three months (228.1 ± 10.6 μm; p < 0.001) of treatment. The eyes treated with SBT injection displayed significant improvement after one (220.1 ± 15.1 μm; p < 0.001) and after three months (231.3 ± 10.9 μm; p < 0.001). The difference between the eyes treated with IVT injection (385.2 ± 11.3 μm) and those treated with SBT injection (235.4 ± 8.7 μm) becomes significant six months after the treatment (p < 0.001).</p> <p>Intraocular pressure of the eyes treated with IVT injection significantly increased after one month (17.7 ± 1.1 mm/Hg; p < 0.020), three (18.2 ± 1.2 mm/Hg; p < 0.003) and six month (18.1 ± 1.3 mm/Hg; p < 0.007) when compared to baseline value (16.1 ± 1.402 mm/Hg). In the SBT injection eyes we didn't display a significant increase of intraocular pressure after one (16.4 ± 1.2 mm/Hg; p < 0.450), three (16.3 ± 1.1 mm/Hg; p < 0.630) and six months (16.2 ± 1.1 mm/Hg; p < 0.720) when compared to baseline value (16.2 ± 1.3 mm/Hg).</p> <p>Conclusion</p> <p>The parabulbar subtenon approach can be considered a valid alternative to the intravitreal injection.</p> <p>Trial registration</p> <p>Current Controlled Trials <b>ISRCTN67086909</b></p
Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse
Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation (RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice (postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such as AMD and DR
- …