2,818 research outputs found
Towards an understanding of nucleon spin structure: from hard to soft scales
The workshop "The Helicity Structure of the Nucleon" (BNL June 5, 2006) was
organized as part of the 2006 RHIC & AGS Users' Meeting to review the status of
the spin problem and future directions. The presentations can be found at
http://www.phenix.bnl.gov/WWW/publish/caidala/UsersHelicityWorkshop2006/ .
Recent data suggests small polarized glue and strangeness in the proton. Here
we present a personal summary of the main results and presentations. What is
new and exciting in the data, and what might this tell us about the structure
of the proton ?Comment: 20 pages, to appear in Int. J. Mod. Phys.
Switching of +/-360deg domain wall states in a nanoring by an azimuthal Oersted field
We demonstrate magnetic switching between two domain wall vortex
states in cobalt nanorings, which are candidate magnetic states for robust and
low power MRAM devices. These domain wall (DW) or "twisted onion"
states can have clockwise or counterclockwise circulation, the two states for
data storage. Reliable switching between the states is necessary for any
realistic device. We accomplish this switching by applying a circular Oersted
field created by passing current through a metal atomic force microscope tip
placed at the center of the ring. After initializing in an onion state, we
rotate the DWs to one side of the ring by passing a current through the center,
and can switch between the two twisted states by reversing the current, causing
the DWs to split and meet again on the opposite side of the ring. A larger
current will annihilate the DWs and create a perfect vortex state in the rings.Comment: 5 pages, 5 figure
Quantum Number Density Asymmetries Within QCD Jets Correlated With Lambda Polarization
The observation of jets in a variety of hard-scattering processes has allowed
the quantitative study of perturbative quantum chromodynamics (PQCD) by
comparing detailed theoretical predictions with a wide range of experimental
data. This paper examines how some important, nonperturbative, facets of QCD
involving the internal dynamical structure of jets can be studied by measuring
the spin orientation of Lambda particles produced in these jets. The
measurement of the transverse polarization for an individual Lambda within a
QCD jet permits the definition of spin-directed asymmetries in local quantum
number densities in rapidity space (such as charge, strangeness and baryon
number densities) involving neighboring hadrons in the jet. These asymmetries
can only be generated by soft, nonperturbative dynamical mechanisms and such
measurements can provide insight not otherwise accessible into the color
rearrangement that occurs during the hadronization stage of the fragmentation
process.Comment: The replacement manuscript contains a new abstract, five pages of
additional material and a revised version of Fig.
The Emerging QCD Frontier: The Electron Ion Collider
The self-interactions of gluons determine all the unique features of QCD and
lead to a dominant abundance of gluons inside matter already at moderate .
Despite their dominant role, the properties of gluons remain largely
unexplored. Tantalizing hints of saturated gluon densities have been found in
+p collisions at HERA, and in d+Au and Au+Au collisions at RHIC. Saturation
physics will have a profound influence on heavy-ion collisions at the LHC. But
unveiling the collective behavior of dense assemblies of gluons under
conditions where their self-interactions dominate will require an Electron-Ion
Collider (EIC): a new facility with capabilities well beyond those In this
paper I outline the compelling physics case for +A collisions at an EIC and
discuss briefly the status of machine design concepts. of any existing
accelerator.Comment: 11 pages, 9 figures, prepared for 20th International Conference on
Ultra-Relativistic Nucleus-Nucleus Collisions: Quark Matter 2008 (QM2008),
Jaipur, India, 4-10 Feb. 200
- …
