14 research outputs found

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe

    Growth in solvable subgroups of GL_r(Z/pZ)

    Get PDF
    Let K=Z/pZK=Z/pZ and let AA be a subset of \GL_r(K) such that is solvable. We reduce the study of the growth of $A$ under the group operation to the nilpotent setting. Specifically we prove that either $A$ grows rapidly (meaning $|A\cdot A\cdot A|\gg |A|^{1+\delta}$), or else there are groups $U_R$ and $S$, with $S/U_R$ nilpotent such that $A_k\cap S$ is large and $U_R\subseteq A_k$, where $k$ is a bounded integer and $A_k = \{x_1 x_2...b x_k : x_i \in A \cup A^{-1} \cup {1}}$. The implied constants depend only on the rank $r$ of $\GL_r(K)$. When combined with recent work by Pyber and Szab\'o, the main result of this paper implies that it is possible to draw the same conclusions without supposing that is solvable.Comment: 46 pages. This version includes revisions recommended by an anonymous referee including, in particular, the statement of a new theorem, Theorem

    Quantum Division Ring

    No full text
    corecore