11 research outputs found

    Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level box-behnken design

    No full text
    The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of piroxicam proniosomes by the slurry method. A 3-factor, 3-level Box-Behnken design was used to derive a second-order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio of Span 60:cholesterol (X1), surfactant loading (X2), and amount of drug (X3). Fifteen batches were prepared by the slurry method and evaluated for percentage drug entrapment (PDE) and vesicle size. The transformed values of the independent variables and the PDE (dependent variable) were subjected to multiple regression to establish a full-model second-order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full-model equation to derive a reduced-model polynomial equation to predict the PDE of proniosome-derived niosomes. Contour plots were constructed to show the effects of X1, X2 and X3 on the PDE. A model was validated for accurate prediction of the PDE by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X1, X2, and X3 (0, −0.158 and -0.158 respectively), for maximized response of PDE with constraints on vesicle size. The Box-Behnken design demonstrated the role of the derived equation and contour plots in predicting the values of dependent variables for the preparation and optimization of piroxicam proniosomes

    In Vitro and In Vivo Evaluation of Proniosomes Containing Celecoxib for Oral Administration

    No full text
    The objectives of this research were to prepare celecoxib proniosomes and evaluate the influence of proniosomal formulation on the oral bioavailability of the drug in human volunteers. A new proniosomal delivery system for a poorly water-soluble drug such as celecoxib was developed and subjected to in vitro and in vivo studies. Proniosomes were prepared by sequential spraying method, which consisted of cholesterol, span 60, and dicetyl phosphate in a molar ratio of 1:1: 0.1, respectively. The average entrapment percent of celecoxib proniosome-derived niosomes was about 95%. The prepared proniosomes showed marked enhancement in the dissolution of celecoxib as compared to pure drug powder. The bioavailability of 200 mg single dose of both celecoxib proniosomal formulation and a conventional marketed celecoxib capsule was studied in human volunteers. The obtained results show that the proniosomal formulation significantly improved the extent of celecoxib absorption than conventional capsule. The mean relative bioavailability of the proniosomal formulation to the conventional capsule was 172.06 ± 0.14%. The mean Tmax for celecoxib was prolonged when given as proniosomal capsule. There was no significant difference between the values of Kel and t1/2 for both celecoxib preparations. In conclusion, the proniosomal oral delivery system of celecoxib with improved bioavailability was established

    Formulation and Optimization of Zidovudine Niosomes

    No full text
    Zidovudine (AZT) is commonly used to treat patients with AIDS, but it is limited by toxicity and high dosing needs. Alternative formulations have been proposed to overcome these drawbacks. The objective of this study was to evaluate process-related variables like hydration and sonication time, rotation speed of evaporation flask, and the effects of charge-inducing agent and centrifugation on zidovudine entrapment and release from niosomes. Formulation of zidovudine niosomes was optimized by altering the proportions of Tween, Span and cholesterol. The effect of process–related variables like hydration time, sonication time, charge-inducing agent, centrifugation and rotational speed of evaporation flask on zidovudine entrapment and release from niosomes was evaluated. The effect of changes in osmotic shock and viscosity were also evaluated. Non-sonicated niosomes were in the size range of 2-3.5 μm and sonicated niosomes formulated with Tween 80 and dicetylphosphate (DCP) had a mean diameter of 801 nm. Zidovudine niosomes formulated with Tween 80 entrapped high amounts of drug and the addition of DCP enhanced drug release for a longer time (88.72% over 12 h). The mechanism of release from Tween 80 formulation was the Fickian type and obeyed first-order release kinetics. Niosomes can be formulated by proper adjustment of process parameters to enhance zidovudine entrapment and sustainability of release. These improvements in zidovudine formulation may be useful in developing a more effective AIDS therapy

    Niosomes

    No full text
    The chapter spans the chemistries, which are harnessed to create niosomes, the concepts upon which their application rests and model examples of the exploitation of this new knowledge to bring healthcare benefits
    corecore