39 research outputs found

    Childhood asthma outcomes during the COVID-19 pandemic: Findings from the PeARL multi-national cohort.

    Get PDF
    BACKGROUND: The interplay between COVID-19 pandemic and asthma in children is still unclear. We evaluated the impact of COVID-19 pandemic on childhood asthma outcomes. METHODS: The PeARL multinational cohort included 1,054 children with asthma and 505 non-asthmatic children aged between 4-18 years from 25 pediatric departments, from 15 countries globally. We compared the frequency of acute respiratory and febrile presentations during the first wave of the COVID-19 pandemic between groups and with data available from the previous year. In children with asthma, we also compared current and historical disease control. RESULTS: During the pandemic, children with asthma experienced fewer upper respiratory tract infections, episodes of pyrexia, emergency visits, hospital admissions, asthma attacks and hospitalizations due to asthma, in comparison to the preceding year. Sixty-six percent of asthmatic children had improved asthma control while in 33% the improvement exceeded the minimal clinically important difference. Pre-bronchodilatation FEV1 and peak expiratory flow rate were improved during the pandemic. When compared to non-asthmatic controls, children with asthma were not at increased risk of LRTIs, episodes of pyrexia, emergency visits or hospitalizations during the pandemic. However, an increased risk of URTIs emerged. CONCLUSION: Childhood asthma outcomes, including control, were improved during the first wave of the COVID-19 pandemic, probably because of reduced exposure to asthma triggers and increased treatment adherence. The decreased frequency of acute episodes does not support the notion that childhood asthma may be a risk factor for COVID-19. Furthermore, the potential for improving childhood asthma outcomes through environmental control becomes apparent

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) affects 5% of children world-wide. Of these, two-thirds continue to have impairing symptoms of ADHD into adulthood. Although a large literature implicates structural brain differences of the disorder, it is not clear if adults with ADHD have similar neuroanatomical differences as those seen in children with recent reports from the large ENIGMA-ADHD consortium finding structural differences for children but not for adults. This paper uses deep learning neural network classification models to determine if there are neuroanatomical changes in the brains of children with ADHD that are also observed for adult ADHD, and vice versa. We found that structural MRI data can significantly separate ADHD from control participants for both children and adults. Consistent with the prior reports from ENIGMA-ADHD, prediction performance and effect sizes were better for the child than the adult samples. The model trained on adult samples significantly predicted ADHD in the child sample, suggesting that our model learned anatomical features that are common to ADHD in childhood and adulthood. These results support the continuity of ADHD’s brain differences from childhood to adulthood. In addition, our work demonstrates a novel use of neural network classification models to test hypotheses about developmental continuity

    Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis

    Full text link
    Apoptotic cells release ‘find-me’ signals at the earliest stages of death to recruit phagocytes1. The nucleotides ATP and UTP represent one class of find-me signals2, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 over-expression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the ‘selective’ plasma membrane permeability of early apoptotic cells to specific dyes3. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases
    corecore