43 research outputs found

    The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?

    Get PDF
    This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO2) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO2 emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO2 emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO2 emissions

    Special issue on advanced applications for smart energy systems considering grid-interactive demand response:editorial

    No full text

    Preface

    No full text

    Designing the sustainable energy transition

    Get PDF

    Explaining the design & styling of future products

    Get PDF
    \u3cp\u3eIn many industries technological innovation is the most important driver of competitive success. Within our master curriculum Industrial Design Engineering, we therefore implemented a course that is dedicated to the development of innovative technology. This course, called Sources of Innovation , provides insight in innovation processes regarding emerging technologies. One of the methods provided is Innovative Design & Styling. The shaping of innovative products is complicated, because the intended new objects have no real 'predecessor' in their existence. On the other hand, design and styling have a major influence on the perception and acceptance of such innovative product concepts. To support the complex process, a special workshop was developed, based on three principles supporting this task: The communication function of design, the balance between novelty and typicality (aka. the MAYA principle: most advanced, yet acceptable), and the proper application of metaphors.\u3c/p\u3

    The role of photovoltaics (PV) in the present and future situation of Suriname

    Get PDF
    \u3cp\u3eThe aim of this paper is to give an overview of the energy sector and the current status of photovoltaic (PV) systems in Suriname and to investigate which role PV systems can play in this country's future energy transition. At this moment, 64% of the power is available from diesel/heavy fuel oil (HFO) gensets while 36% is available from renewables namely hydroelectric power systems and PV systems. Suriname has renewable energy (RE) targets for 2017 and 2022 which already have been achieved by this 36%. However, the RE target of 2027 of 47% must be achieved yet. As there is abundant irradiance available, on an average 1792 kWh/m2/year and because several PV systems have already been successfully implemented, PV can play an important role in the energy transition of Suriname. In order to achieve the 2027 target with only PV systems, an additional 110 MWp of installed PV capacity will be required. Governmental and non-governmental institutes have planned PV projects. If these will be executed in the future than annually 0.8 TWh electricity will be produced by PV systems. In order to meet the electricity demand of 2027 fully, 2.2 TWh PV electricity will be required which implies that more PV systems must be implemented in Suriname besides the already scheduled ones.\u3c/p\u3

    Real-time irradiance simulation for PV products and building integrated PV in a virtual reality environment

    No full text
    \u3cp\u3eThis paper describes a new software tool named VR4PV, which has been developed for real-time simulation of irradiance for photovoltaic (PV) products in a virtual 3-D environment. This tool offers the possibility for product designers and architects to evaluate the distribution of irradiance on surfaces with an arbitrary geometry that can be covered with PV cells. In addition, the energetic performance can be estimated during the design process of PV products and building integrated PV (BIPV). The software allows for irradiance calculations on multiple arbitrarily oriented surfaces at the same time. It includes shadow simulation for multiple surrounding objects with various shapes and can handle movements of the 3-D objects during the simulation, which might be useful for the design of moving PV-powered products like boats, cars, and portable handhelds. A validation is carried out based on 1-min outdoor measurements of irradiance on two different locations in Italy and in California.\u3c/p\u3

    Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level

    Get PDF
    \u3cp\u3ePhotovoltaic (PV) energy could play a large role in increasing the electrification ratio and decreasing greenhouse gas emissions in Indonesia, especially since Indonesia comprises over 17,000 islands which is a challenge for the distribution of fuels and modern grid connection. The potential of grid-connected PV depends on, a.o. population, electrification ratio, irradiance, electricity demand, electricity generation costs and the urbanization ratio. Large spatial differences exist for these factors in Indonesia, therefore this study aims to assess the energetic potential and cost-effectiveness of grid-connected PV in Indonesia on a provincial level. Taking restrictions of the electricity demand during day-time and a minimal base load of conventional power systems into account, the total potential of grid-connected PV systems is about 27 GWp, generating 37 TWh/year, which is about 26% of the total electricity consumption in Indonesia over 2010. In the eastern provinces of Indonesia the LCOE of PV in grid-connected urban areas is lower than the cost of present electricity generation and could be a viable alternative if excluding high subsidies for electricity production.\u3c/p\u3

    An overview of existing experiences with solar-powered e-bikes

    No full text
    \u3cp\u3eElectric bicycles (e-bikes) are considered a sustainable alternative to automobile transportation today. The electric bike includes all the benefits that conventional bicycles offer, plus faster, more comfortable and longer trips, as well as less effort for the user. In this paper, we specifically focus on a new type of e-bike, the so-called 'solar-powered e-bike'. Therefore, this review paper explores existing literature findings for the use of solar energy in transportation, and more specifically in e-bikes. This paper aims to capture the status of and experiences with the use of e-bikes; more specifically, with solar-powered e-bikes. It presents research conducted so far on e-bikes and solar-powered e-bikes, as well as the main technical features of the solar e-bike. Finally, it analyzes a sample of e-bikes' and solar-powered e-bikes' users, based on Dutch National Travel Survey data and an experimental field study conducted in 2017. Data showed that the main target group of (solar) e-bikes are commuters in the age group between 40 and 60 years old, commuting distances longer than 6 km, with a gross income higher than €2500. Solar-powered e-bikes are concluded to have potential as a sustainable way of transportation in urban areas and cities, potentially replacing the conventional means of transport.\u3c/p\u3

    Experiences of end-users of the electricity grid

    No full text
    \u3cp\u3eThis chapter explores the reliability of electricity supply in Indonesia.\u3c/p\u3
    corecore