4 research outputs found

    Numerical investigation of Herschel–Bulkley fluid flows in 2D porous media: Yielding behaviour and tortuosity

    Get PDF
    Hydraulic tortuosity is commonly used as an input to macroscopic flow models in porous media, accounting for the sinuosity of the streamlines. It is well known that hydraulic tortuosity does not depend on the applied pressure gradient for Newtonian creeping flows. Nevertheless, this is not necessarily the case for yield stress fluids flows, given the directional nature of both yielding and shear-thinning behaviour. This study aims at a breakthrough on the relationship between the hydraulic tortuosity and the level of yielding. To do so, the hydraulic tortuosity of the flow paths is evaluated in 2D porous media by means of direct numerical simulations and subsequently put in relation with the morphological information of the medium provided by pore-network modelling. Moreover, the effects of pore dimensions, spatial disorder and rheological parameters on yielding behaviour are examined. In most situations, the reported tortuosity values are lower than those obtained for Newtonian fluids

    AnĂĄlise da escala de comprimento caracterizada pelo mĂ©todo de porosimetria de fluidos nĂŁo newtonianos para meios consolidados: comparação com modelos de rede de poros e porosimetria de intrusĂŁo de mercĂșrio

    No full text
    Substantial progress has been recently achieved in the development of a clean alternative to mercury intrusion porosimetry (MIP) based on single-phase flow measurements in porous samples using yield stress fluids. However, no study to date has examined the scale of the pore length actually provided by the yield stress fluids porosimetry method (YSM) in consolidated porous media. Indeed, while the results of YSM were compared to those provided by MIP in the past, the relationships between the characterized pore size distribution (PSD) and the actual pore geometry have still not been addressed for this type of porous media. This issue is of special interest to geoscientists involved in seeking relevant information from core characterization operations. With this aim in mind, the objective of the present paper is to evaluate the agreement between the PSDs characterized by YSM, the pore-opening size distributions provided by MIP tests, and the pore-throat and pore-body size distributions obtained from X-ray computed microtomography. For this purpose, a set of artificial and natural porous samples with permeability values extending over two magnitudes were characterized by using both YSM and MIP laboratory tests. Then, the results were matched to the model pore geometries extracted from digital images of the real microstructure. This analysis led to the main conclusion that YSM can be reliably used as an adequate substitute for MIP in the case of the investigated consolidated media, given the general agreement observed between these methods

    Remediation of multilayer soils contaminated by heavy chlorinated solvents using biopolymer-surfactant mixtures: Two-dimensional flow experiments and simulations

    No full text
    To assess the efficiency of remediating dense non-aqueous phase liquids (DNAPLs), here heavy chlorinated solvents, through injection of xanthan solutions with or without surfactant (sodium dodecylbenzenesulfonate: SDBS), we conducted a comprehensive investigation involving rheological measurements, column (1D) and two-dimensional (2D) sandbox experiments, as well as numerical simulations on two-layers sand packs. Sand packs with grain sizes of 0.2–0.3 mm and 0.4–0.6 mm, chosen to represent the low and high permeable soil layers respectively, were selected to be representative of real polluted field. The rheological analysis of xanthan solutions showed that the addition of SDBS to the solution reduced its viscosity due to repulsive electrostatic forces and hydrophobic interactions between the molecules while preserving its shear-thinning behavior. Results of two-phase flow experiments depicted that adding SDBS to the polymer solution led to a reduced differential pressure along the soil and improvements of the DNAPL recovery factor of approximately 0.15 and 0.07 in 1D homogeneous and 2D layered systems, respectively. 2D experiments revealed that the displacement of DNAPL in multilayer zones was affected by permeability difference and density contrast in a heterogeneous soil. Simulation of multiphase flow in a multilayered system was performed by incorporating non-Newtonian properties and coupling the continuity equation with generalized Darcy's law. The results of modeling and experiments are very consistent. Numerical simulations showed that for an unconfined soil, the recovery of DNAPL by injection of xanthan solution can be reduced for more than 50%. In a large 2D experimental system, the combination of injecting xanthan with blocking the contaminated zone led to a promising remediation of DNAPL-contaminated layered zones, with a recovery of 0.87

    Towards a new method of porosimetry: principles and experiments

    Get PDF
    Current experimental methods used to determine pore size distributions (PSD) of porous media present several drawbacks such as toxicity of the employed fluids (e.g., mercury porosimetry). The theoretical basis of a new method to obtain the PSD by injecting yield stress fluids through porous media and measuring the flow rate Q at several pressure gradients ∇P was proposed in the literature. On the basis of these theoretical considerations, an intuitive approach to obtain PSD from Q(∇P) is presented in this work. It relies on considering the extra increment of Q when ∇P is increased, as a consequence of the pores of smaller radius newly incorporated to the flow. This procedure is first tested and validated on numerically generated experiments. Then, it is applied to exploit data coming from laboratory experiments and the obtained PSD showgood agreement with the PSD deduced frommercury porosimetry
    corecore