14 research outputs found

    Nano-iron oxide-ethylene glycol-water nanofluid based photovoltaic thermal (PV/T) system with spiral flow absorber: An energy and exergy analysis

    No full text
    Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity

    A Review on Recent Development of Cooling Technologies for Photovoltaic Modules

    No full text
    When converting solar energy to electricity, a big proportion of energy is not converted for electricity but for heating PV cells, resulting in increased cell temperature and reduced electrical efficiency. Many cooling technologies have been developed and used for PV modules to lower cell temperature and boost electric energy yield. However, little crucial review work was proposed to comment cooling technologies for PV modules. Therefore, this paper has provided a thorough review of the up-to-date development of existing cooling technologies for PV modules, and given appropriate comments, comparisons and discussions. According to the ways or principles of cooling, existing cooling technologies have been classified as fluid medium cooling (air cooling, water cooling and nanofluids cooling), optimizing structural configuration cooling and phase change materials cooling. Potential influential factors and sub-methods were collected from the review work, and their contributions and impact have been discussed to guide future studies. Although most cooling technologies reviewed in this paper are matured, there are still problems need to be solved, such as the choice of cooling fluid and its usability for specific regions, the fouling accumulation and cleaning of enhanced heat exchangers with complex structures, the balance between cooling cost and net efficiency of PV modules, the cooling of circulating water in tropical areas and the freezing of circulating water in cold areas. To be advocated, due to efficient heat transfer and spectral filter characters, nanofluids can promote the effective matching of solar energy at both spectral and spatial scales to achieve orderly energy utilization
    corecore