41 research outputs found

    Identification and In Vivo Characterization of NvFP-7R, a Developmentally Regulated Red Fluorescent Protein of Nematostella vectensis

    Get PDF
    In recent years, the sea anemone Nematostella vectensis has emerged as a critical model organism for comparative genomics and developmental biology. Although Nematostella is a member of the anthozoan cnidarians (known for producing an abundance of diverse fluorescent proteins (FPs)), endogenous patterns of Nematostella fluorescence have not been described and putative FPs encoded by the genome have not been characterized.We described the spatiotemporal expression of endogenous red fluorescence during Nematostella development. Spatially, there are two patterns of red fluorescence, both restricted to the oral endoderm in developing polyps. One pattern is found in long fluorescent domains associated with the eight mesenteries and the other is found in short fluorescent domains situated between tentacles. Temporally, the long domains appear simultaneously at the 12-tentacle stage. In contrast, the short domains arise progressively between the 12- and 16-tentacle stage. To determine the source of the red fluorescence, we used bioinformatic approaches to identify all possible putative Nematostella FPs and a Drosophila S2 cell culture assay to validate NvFP-7R, a novel red fluorescent protein. We report that both the mRNA expression pattern and spectral signature of purified NvFP-7R closely match that of the endogenous red fluorescence. Strikingly, the red fluorescent pattern of NvFP-7R exhibits asymmetric expression along the directive axis, indicating that the nvfp-7r locus senses the positional information of the body plan. At the tissue level, NvFP-7R exhibits an unexpected subcellular localization and a complex complementary expression pattern in apposed epithelia sheets comprising each endodermal mesentery.These experiments not only identify NvFP-7R as a novel red fluorescent protein that could be employed as a research tool; they also uncover an unexpected spatio-temporal complexity of gene expression in an adult cnidarian. Perhaps most importantly, our results define Nematostella as a new model organism for understanding the biological function of fluorescent proteins in vivo

    Runx Expression Is Mitogenic and Mutually Linked to Wnt Activity in Blastula-Stage Sea Urchin Embryos

    Get PDF
    The Runt homology domain (Runx) defines a metazoan family of sequence-specific transcriptional regulatory proteins that are critical for animal development and causally associated with a variety of mammalian cancers. The sea urchin Runx gene SpRunt-1 is expressed throughout the blastula stage embryo, and is required globally during embryogenesis for cell survival and differentiation.Depletion of SpRunt-1 by morpholino antisense-mediated knockdown causes a blastula stage deficit in cell proliferation, as shown by bromodeoxyuridine (BrdU) incorporation and direct cell counts. Reverse transcription coupled polymerase chain reaction (RT-PCR) studies show that the cell proliferation deficit is presaged by a deficit in the expression of several zygotic wnt genes, including wnt8, a key regulator of endomesoderm development. In addition, SpRunt-1-depleted blastulae underexpress cyclinD, an effector of mitogenic Wnt signaling. Blastula stage cell proliferation is also impeded by knockdown of either wnt8 or cyclinD. Chromatin immunoprecipitation (ChIP) indicates that Runx target sites within 5′ sequences flanking cyclinD, wnt6 and wnt8 are directly bound by SpRunt-1 protein at late blastula stage. Furthermore, experiments using a green fluorescent protein (GFP) reporter transgene show that the blastula-stage operation of a cis-regulatory module previously shown to be required for wnt8 expression (Minokawa et al., Dev. Biol. 288: 545–558, 2005) is dependent on its direct sequence-specific interaction with SpRunt-1. Finally, inhibitor studies and immunoblot analysis show that SpRunt-1 protein levels are negatively regulated by glycogen synthase kinase (GSK)-3.These results suggest that Runx expression and Wnt signaling are mutually linked in a feedback circuit that controls cell proliferation during development

    Changing Hydrozoan Bauplans by Silencing Hox-Like Genes

    Get PDF
    Regulatory genes of the Antp class have been a major factor for the invention and radiation of animal bauplans. One of the most diverse animal phyla are the Cnidaria, which are close to the root of metazoan life and which often appear in two distinct generations and a remarkable variety of body forms. Hox-like genes have been known to be involved in axial patterning in the Cnidaria and have been suspected to play roles in the genetic control of many of the observed bauplan changes. Unfortunately RNAi mediated gene silencing studies have not been satisfactory for marine invertebrate organisms thus far. No direct evidence supporting Hox-like gene induced bauplan changes in cnidarians have been documented as of yet. Herein, we report a protocol for RNAi transfection of marine invertebrates and demonstrate that knock downs of Hox-like genes in Cnidaria create substantial bauplan alterations, including the formation of multiple oral poles (“heads”) by Cnox-2 and Cnox-3 inhibition, deformation of the main body axis by Cnox-5 inhibition and duplication of tentacles by Cnox-1 inhibition. All phenotypes observed in the course of the RNAi studies were identical to those obtained by morpholino antisense oligo experiments and are reminiscent of macroevolutionary bauplan changes. The reported protocol will allow routine RNAi studies in marine invertebrates to be established

    Expression of the male reproduction-related gene (Mar-Mrr) in the spermatic duct of the giant freshwater prawn, Macrobrachium rosenbergii

    Full text link
    Phosphorylated sperm proteins are crucial for sperm maturation and capacitation as a priori to their fertilization with eggs. In the freshwater prawn, Macrobrachium rosenbergii, a male reproduction-related protein (Mar-Mrr) was known to be expressed only in the spermatic ducts as a protein with putative phosphorylation and may be involved in sperm capacitation in this species. We investigated further the temporal and spatial expression of the Mar-Mrr gene using RT-PCR and in situ hybridization and the characteristics and fate of the protein using immunblotting and immunocytochemistry. The Mar-Mrr gene was first expressed in 4-week-old post larvae and the protein was produced in epithelial cells lining the spermatic ducts, at the highest level in the proximal region and decreased in the middle and distal parts. The native protein had a MW of 17 kDa and a high degree of serine/threonine phosphorylation. It was transferred from the epithelial cells to become a major protein at the anterior region of the sperm. We suggest that it is involved in sperm capacitation and fertilization in this open thelycal species and this is being investigated

    Spatial gene expression quantification: a tool for analysis of <it>in situ </it>hybridizations in sea anemone <it>Nematostella vectensis</it>

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spatial gene expression quantification is required for modeling gene regulation in developing organisms. The fruit fly <it>Drosophila melanogaster</it> is the model system most widely applied for spatial gene expression analysis due to its unique embryonic properties: the shape does not change significantly during its early cleavage cycles and most genes are differentially expressed along a straight axis. This system of development is quite exceptional in the animal kingdom.</p> <p>In the sea anemone <it>Nematostella vectensis</it> the embryo changes its shape during early development; there are cell divisions and cell movement, like in most other metazoans. <it>Nematostella</it> is an attractive case study for spatial gene expression since its transparent body wall makes it accessible to various imaging techniques.</p> <p>Findings</p> <p>Our new quantification method produces standardized gene expression profiles from raw or annotated <it>Nematostella in situ</it> hybridizations by measuring the expression intensity along its cell layer. The procedure is based on digital morphologies derived from high-resolution fluorescence pictures. Additionally, complete descriptions of nonsymmetric expression patterns have been constructed by transforming the gene expression images into a three-dimensional representation.</p> <p>Conclusions</p> <p>We created a standard format for gene expression data, which enables quantitative analysis of <it>in situ</it> hybridizations from embryos with various shapes in different developmental stages. The obtained expression profiles are suitable as input for optimization of gene regulatory network models, and for correlation analysis of genes from dissimilar <it>Nematostella</it> morphologies. This approach is potentially applicable to many other metazoan model organisms and may also be suitable for processing data from three-dimensional imaging techniques.</p
    corecore