21 research outputs found

    Neonatal immune responses to TLR2 stimulation: Influence of maternal atopy on Foxp3 and IL-10 expression

    Get PDF
    BACKGROUND: Maternal atopic background and stimulation of the adaptive immune system with allergen interact in the development of allergic disease. Stimulation of the innate immune system through microbial exposure, such as activation of the innate Toll-like-receptor 2 (TLR2), may reduce the development of allergy in childhood. However, little is known about the immunological effects of microbial stimulation on early immune responses and in association with maternal atopy. METHODS: We analyzed immune responses of cord blood mononuclear cells (CBMC) from 50 healthy neonates (31 non-atopic and 19 atopic mothers). Cells were stimulated with the TLR2 agonist peptidoglycan (Ppg) or the allergen house dust mite Dermatophagoides farinae (Derf1), and results compared to unstimulated cells. We analyzed lymphocyte proliferation and cytokine secretion of CBMC. In addition, we assessed gene expression associated with T regulatory cells including the transcription factor Foxp3, the glucocorticoid-induced TNF receptor (GITR), and the cytotoxic lymphocyte antigen 4 (CTLA4). Lymphocyte proliferation was measured by (3)H-Thymidine uptake, cytokine concentrations determined by ELISA, mRNA expression of T cell markers by real-time RT-PCR. RESULTS: Ppg stimulation induced primarily IL-10 cytokine production, in addition to IFN-γ, IL-13 and TNF-α secretion. GITR was increased following Ppg stimulation (p = 0.07). Ppg-induced IL-10 production and induction of Foxp3 were higher in CBMC without, than with maternal atopy (p = 0.04, p = 0.049). IL-10 production was highly correlated with increased expression of Foxp3 (r = 0.53, p = 0.001), GITR (r = 0.47, p = 0.004) and CTLA4 (r = 0.49, p = 0.003), independent of maternal atopy. CONCLUSION: TLR2 stimulation with Ppg induces IL-10 and genes associated with T regulatory cells, influenced by maternal atopy. Increased IL-10 and Foxp3 induction in CBMC of non-atopic compared to atopic mothers, may indicate an increased capacity to respond to microbial stimuli

    Adipose Inflammation Initiates Recruitment of Leukocytes to Mouse Femoral Artery: Role of Adipo-Vascular Axis in Chronic Inflammation

    Get PDF
    Background: Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation. Methods and Results: We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1b in the stromal vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as well as in HF mice as compared to those fed NC

    Age-Dependent Maturation of Toll-Like Receptor-Mediated Cytokine Responses in Gambian Infants

    Get PDF
    The global burden of neonatal and infant mortality due to infection is staggering, particularly in resource-poor settings. Early childhood vaccination is one of the major interventions that can reduce this burden, but there are specific limitations to inducing effective immunity in early life, including impaired neonatal leukocyte production of Th1-polarizing cytokines to many stimuli. Characterizing the ontogeny of Toll-like receptor (TLR)-mediated innate immune responses in infants may shed light on susceptibility to infection in this vulnerable age group, and provide insights into TLR agonists as candidate adjuvants for improved neonatal vaccines. As little is known about the leukocyte responses of infants in resource-poor settings, we characterized production of Th1-, Th2-, and anti-inflammatory- cytokines in response to agonists of TLRs 1-9 in whole blood from 120 Gambian infants ranging from newborns (cord blood) to 12 months of age. Most of the TLR agonists induced TNFα, IL-1β, IL-6, and IL-10 in cord blood. The greatest TNFα responses were observed for TLR4, -5, and -8 agonists, the highest being the thiazoloquinoline CLO75 (TLR7/8) that also uniquely induced cord blood IFNγ production. For most agonists, TLR-mediated TNFα and IFNγ responses increased from birth to 1 month of age. TLR8 agonists also induced the greatest production of the Th1-polarizing cytokines TNFα and IFNγ throughout the first year of life, although the relative responses to the single TLR8 agonist and the combined TLR7/8 agonist changed with age. In contrast, IL-1β, IL-6, and IL-10 responses to most agonists were robust at birth and remained stable through 12 months of age. These observations provide fresh insights into the ontogeny of innate immunity in African children, and may inform development of age-specific adjuvanted vaccine formulations important for global health
    corecore