29 research outputs found

    Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum

    Full text link
    Static asymptotically Lifshitz wormholes and black holes in vacuum are shown to exist for a class of Lovelock theories in d=2n+1>7 dimensions, selected by requiring that all but one of their n maximally symmetric vacua are AdS of radius l and degenerate. The wormhole geometry is regular everywhere and connects two Lifshitz spacetimes with a nontrivial geometry at the boundary. The dynamical exponent z is determined by the quotient of the curvature radii of the maximally symmetric vacua according to n(z^2-1)+1=(l/L)^2, where L corresponds to the curvature radius of the nondegenerate vacuum. Light signals are able to connect both asymptotic regions in finite time, and the gravitational field pulls towards a fixed surface located at some arbitrary proper distance to the neck. The asymptotically Lifshitz black hole possesses the same dynamical exponent and a fixed Hawking temperature given by T=z/(2^z pi l). Further analytic solutions, including pure Lifshitz spacetimes with a nontrivial geometry at the spacelike boundary, and wormholes that interpolate between asymptotically Lifshitz spacetimes with different dynamical exponents are also found.Comment: 19 pages, 1 figur

    Azithromycin in the extremely low birth weight infant for the prevention of Bronchopulmonary Dysplasia: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Azithromycin reduces the severity of illness in patients with inflammatory lung disease such as cystic fibrosis and diffuse panbronchiolitis. Bronchopulmonary dysplasia (BPD) is a pulmonary disorder which causes significant morbidity and mortality in premature infants. BPD is pathologically characterized by inflammation, fibrosis and impaired alveolar development. The purpose of this study was to obtain pilot data on the effectiveness and safety of prophylactic azithromycin in reducing the incidence and severity of BPD in an extremely low birth weight (≤ 1000 grams) population.</p> <p>Methods</p> <p>Infants ≤ 1000 g birth weight admitted to the University of Kentucky Neonatal Intensive Care Unit (level III, regional referral center) from 9/1/02-6/30/03 were eligible for this pilot study. The pilot study was double-blinded, randomized, and placebo-controlled. Infants were randomized to treatment or placebo within 12 hours of beginning mechanical ventilation (IMV) and within 72 hours of birth. The treatment group received azithromycin 10 mg/kg/day for 7 days followed by 5 mg/kg/day for the duration of the study. Azithromycin or placebo was continued until the infant no longer required IMV or supplemental oxygen, to a maximum of 6 weeks. Primary endpoints were incidence of BPD as defined by oxygen requirement at 36 weeks gestation, post-natal steroid use, days of IMV, and mortality. Data was analyzed by intention to treat using Chi-square and ANOVA.</p> <p>Results</p> <p>A total of 43 extremely premature infants were enrolled in this pilot study. Mean gestational age and birth weight were similar between groups. Mortality, incidence of BPD, days of IMV, and other morbidities were not significantly different between groups. Post-natal steroid use was significantly less in the treatment group [31% (6/19)] vs. placebo group [62% (10/16)] (p = 0.05). Duration of mechanical ventilation was significantly less in treatment survivors, with a median of 13 days (1–47 days) vs. 35 days (1–112 days)(p = 0.02).</p> <p>Conclusion</p> <p>Our study suggests that azithromycin prophylaxis in extremely low birth weight infants may effectively reduce post-natal steroid use for infants. Further studies are needed to assess the effects of azithromycin on the incidence of BPD and possible less common side effects, before any recommendations regarding routine clinical use can be made.</p

    Chronic Respiratory Failure in Neonates

    No full text
    The original publication on bronchopulmonary dysplasia (BPD) by Northway and collaborators described a group of preterm infants who after prolonged mechanical ventilation developed chronic respiratory failure and characteristic radiographic findings (Northway et al. 1967). The lung damage was attributed primarily to the use of aggressive positive-pressure ventilation and high inspired oxygen concentrations. Today, with the widespread use of antenatal corticosteroids and the use of postnatal surfactant and less aggressive mechanical ventilation, this severe form of BPD has been replaced by a milder form that presents in the more immature infants who frequently have only mild initial respiratory disease (Charafeddine et al. 1999; Parker et al. 1992; Rojas et al. 1995). Therefore, these infants are not exposed to the very high airway pressures or oxygen concentrations, the two main factors in the pathogenesis of the original form of BPD. This milder form of the disease has been described as “New BPD.” This new presentation has created some inconsistencies and confusion in the definition and the diagnostic criteria of BPD (Bancalari et al. 2003)
    corecore