77 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review

    Full text link

    Agricultural uses of plant biostimulants

    Get PDF

    Cerebrovascular Disease

    No full text

    Zinc supplementation for improving glucose handling in pre-diabetes: A double blind randomized placebo controlled pilot study

    Full text link
    © 2016 Elsevier Ireland Ltd. Aims: There are a number of studies showing that zinc supplementation may improve glucose handling in people with established diabetes. We sought to investigate whether this zinc-dependent improvement in glucose handling could potentially be harnessed to prevent the progression of pre-diabetes to diabetes. In this double-blind randomized placebo-controlled trial, we determined participants' fasting blood glucose levels, (FBG) and Homeostasis Model Assessment (HOMA) parameters (beta cell function, insulin sensitivity and insulin resistance) at baseline and after 6 months of zinc supplementation. Methods: The Bangladesh Institute of Health Sciences Hospital (BIHS) (Mirpur, Dhaka, Bangladesh) database was used to identify 224 patients with prediabetes, of whom 55 met the inclusion criteria and agreed to participate. The participants were randomized either to the intervention or control group using block randomization. The groups received either 30 mg zinc sulphate dispersible tablet or placebo, once daily for six months. Results: After six months, the intervention group significantly improved their FBG concentration compared to the placebo group (5.37 ± 0.20 mmol/L vs 5.69 ± 0.26, p < 0.001) as well as compared to their own baseline (5.37 ± 0.20 mmol/L vs 5.8 ± 0.09, p < 0.001). Beta cell function, insulin sensitivity and insulin resistance all showed a statistically significant improvement as well. Conclusion: To our knowledge this is the first trial to show an improvement in glucose handling using HOMA parameters in participants with prediabetes. Larger randomized controlled trials are warranted to confirm these findings and to explore clinical endpoints

    Mislocalization of mitochondria and compromised renal function and oxidative stress resistance in Drosophila SesB mutants

    No full text
    Mitochondria accumulate at sites of intense metabolic activity within cells, but the adaptive value of this placement is not clear. In Drosophila, sesB encodes the ubiquitous isoform of adenine nucleotide translocase (ANT, the mitochondrial inner membrane ATP/ADP exchanger); null alleles are lethal, whereas hypomorphic alleles display sensitivity to a range of stressors. In the adult renal tubule, which is densely packed with mitochondria and hence enriched for sesB, both hypomorphic alleles and RNA interference knockdowns cause the mitochondria to lose their highly polarized distribution in the tissue and to become rounded. Basal cytoplasmic and mitochondrial calcium levels are both increased, and neuropeptide calcium response compromised, with concomitant defects in fluid secretion. The remaining mitochondria in sesB mutants are overactive and maintain depleted cellular ATP levels while generating higher levels of hydrogen peroxide than normal. When sesB expression is knocked down in just tubule principal cells, the survival of the whole organism upon oxidative stress is reduced, implying a limiting role for the tubule in homeostatic response to stressors. The physiological impacts of defective ANT expression are thus widespread and diverse
    • 

    corecore