11 research outputs found

    Examining the potential impacts of sea level rise on coastal wetlands in north-eastern NSW, Australia

    No full text
    The coastal wetlands of north-eastern New South Wales (NSW) Australia are increasingly being affected by anthropogenic factors such as urbanisation, residential development and agricultural development. However, little is known about their vulnerability to sea level rise as a result of climate change. The aim of this research is to predict the potential impact of sea level rise (SLR) on the coastal wetland communities. Sea Level Affecting Marshes Model (SLAMM) was used to predict the potential impacts of sea level rise. Geographic Information System (GIS) was used for mapping and analysis. It was found that a meter rise in sea level could decrease coastal wetlands such as Inland fresh marshes from about 225.67 km2 in February 2009 to about 168.04 km2 by the end of the century in north-eastern NSW, Australia. The outcomes from this research can contribute to enhancing wetland conservation and management in NSW

    Comparison of Polycyclic Aromatic Hydrocarbon (PAHs) concentrations in urban and natural forest soils in the Atlantic Forest (São Paulo State)

    Get PDF
    Studies about pollution by Polycyclic Aromatic Hydrocarbons (PAHs) in tropical soils and Brazil are scarce. A study was performed to examine the PAHs composition, concentrations and sources in red-yellow Oxisols of remnant Atlantic Forest of the São Paulo State. Sampling areas were located in an urban site (PEFI) and in a natural one (CUNHA).The granulometric composition, pH, organic matter content and mineralogical composition were determined in samples of superficial soils. The sum of PAHs (&#931;HPAs) was 4.5 times higher in the urban area than in the natural one. Acenaphthylene, acenaphthene, fluorene, phenanthrene and fluoranthene have been detected in the soils of both areas and presented similar concentrations. Acenaphthene and fluorene were the most abundant compounds. Pyrene was twice more abundant in the soils of natural area (15 µg.kg-1) than of the urban area and fluoranthene was the dominant compound (203 µg.kg-1) in urban area (6.8 times higher than in the natural area). Some compounds of higher molecular weight, which are tracers of vehicular emissions showed significant concentrations in urban soils. Pyrene represented 79% of &#931;PAHs whereas it has not been detected in natural soils. The results showed that forest soils in urban area are characterized by the accumulation of high molecular weight compounds of industrial and vehicular origin.<br>Estudos sobre a poluição por Hidrocarbonetos Policíclicos Aromáticos (HPAs) são escassos em solos tropicais e no Brasil. Um estudo foi realizado para examinar a composição, as concentrações e fontes de HPAs encontrados em Latossolos vermelho-amarelo (Oxissolos), remanescentes de Mata Atlântica no Estado de São Paulo. As áreas de estudos localizaram-se em um sítio urbano (PEFI) e um natural (CUNHA). A composição granulométrica, pH, teor de matéria orgânica e composição mineralógica foram determinados em amostras de solo superficial. A soma dos HPAs analisados (&#931;HPAs) foi 4,5 vezes mais elevada na área urbana do que na área natural. Acenaftileno, acenafteno, fluoreno, fenantreno e fluoranteno foram detectados, em concentrações similares, nos solos das duas áreas. Acenafteno e fluoreno foram os compostos mais abundantes. O pireno foi duas vezes mais abundante no solo da área natural (15 µg.kg-1), e o fluoranteno foi o composto dominante (203 µg.kg-1) na área urbana (6,8 vezes mais elevado que na área natural). Alguns compostos de alto peso molecular, traçadores de emissões veiculares, foram detectados em quantidades significativas no solo da área urbana. O pireno representou 79% da &#931;HPAs, enquanto que não foi detectado na área natural. Estes resultados evidenciaram que os solos de floresta em áreas urbanas são caracterizados pela acumulação de HPAs pesados oriundos de emissões industriais e veiculares

    Determination of the triple oxygen and carbon isotopic composition of CO<sub>2</sub> from atomic ion fragments formed in the ion source of the 253 Ultra high-resolution isotope ratio mass spectrometer

    Get PDF
    Rationale: Determination of δ17O values directly from CO2 with traditional gas source isotope ratio mass spectrometry is not possible due to isobaric interference of 13C16O16O on 12C17O16O. The methods developed so far use either chemical conversion or isotope equilibration to determine the δ17O value of CO2. In addition, δ13C measurements require correction for the interference from 12C17O16O on 13C16O16O since it is not possible to resolve the two isotopologues. Methods: We present a technique to determine the δ17O, δ18O and δ13C values of CO2 from the fragment ions that are formed upon electron ionization in the ion source of the Thermo Scientific 253 Ultra high-resolution isotope ratio mass spectrometer (hereafter 253 Ultra). The new technique is compared with the CO2-O2 exchange method and the 17O-correction algorithm for δ17O and δ13C values, respectively. Results: The scale contractions for δ13C and δ18O values are slightly larger for fragment ion measurements than for molecular ion measurements. The δ17O and Δ17O values of CO2 can be measured on the 17O+ fragment with an internal error that is a factor 1–2 above the counting statistics limit. The ultimate precision depends on the signal intensity and on the total time that the 17O+ beam is monitored; a precision of 14 ppm (parts per million) (standard error of the mean) was achieved in 20 hours at the University of Göttingen. The Δ17O measurements with the O-fragment method agree with the CO2-O2 exchange method over a range of Δ17O values of −0.3 to +0.7‰. Conclusions: Isotope measurements on atom fragment ions of CO2 can be used as an alternative method to determine the carbon and oxygen isotopic composition of CO2 without chemical processing or corrections for mass interferences.</p

    Nodule Formation and Function

    No full text
    corecore