4 research outputs found

    Performance evaluation of bluetooth low energy for high data rate body area networks

    Get PDF
    Bluetooth Low Energy (BLE) is a promising wireless network technology, in the context of body area network (BAN) applications, to provide the required quality of service (QoS) support concerning the communication between sensor nodes placed on a user’s body and a personal device, such as a smartphone. Most previous BLE performance studies in the literature have focused primarily in networks with a single slave (point-to-point link) or traffic scenarios with relatively low data rate. However, many BAN sensors generate high data rate traffic, and several sensor nodes (slaves) may be actively sending data in the same BAN. Therefore, this work focuses on the evaluation of the suitability of BLE mainly under these conditions. Results show that, for the same traffic, the BLE protocol presents lower energy consumption and supports more sensor nodes than an alternative IEEE 802.15.4-based protocol. This study also identifies and characterizes some implementation constraints on the tested platforms that impose limits on the achievable performance.This work has been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the projects UID/EEA/04436/2013 and UID/CTM/50025/2013, and by FEDER funds through the COMPETE 2020 Programme

    Design of a Wearable Remote Neonatal Health Monitoring Device

    No full text
    In this text we present the design of a wearable health monitoring device capable of remotely monitoring health parameters of neonates for the first few weeks after birth. The device is primarily aimed at continuously tracking the skin temperature to indicate the onset of hypothermia in newborns. A medical grade thermistor is responsible for temperature measurement and is directly interfaced to a microcontroller with an integrated bluetooth low energy radio. An inertial sensor is also present in the device to facilitate breathing rate measurement which has been discussed briefly. Sensed data is transferred securely over bluetooth low energy radio to a nearby gateway, which relays the information to a central database for real time monitoring. Low power optimizations at both the circuit and software levels ensure a prolonged battery life. The device is packaged in a baby friendly, water proof housing and is easily sterilizable and reusable
    corecore