420 research outputs found

    Semantic memory modeling and memory interaction in learning agents

    Get PDF

    Adaptive computer‐generated forces for simulator‐based training, Expert Systems with Applications

    Get PDF
    Simulator-based training is in constant pursuit of increasing level of realism. The transition from doctrine-driven computer-generated forces (CGF) to adaptive CGF represents one such effort. The use of doctrine-driven CGF is fraught with challenges such as modeling of complex expert knowledge and adapting to the trainees’ progress in real time. Therefore, this paper reports on how the use of adaptive CGF can overcome these challenges. Using a self-organizing neural network to implement the adaptive CGF, air combat maneuvering strategies are learned incrementally and generalized in real time. The state space and action space are extracted from the same hierarchical doctrine used by the rule-based CGF. In addition, this hierarchical doctrine is used to bootstrap the self-organizing neural network to improve learning efficiency and reduce model complexity. Two case studies are conducted. The first case study shows how adaptive CGF can converge to the effective air combat maneuvers against rule-based CGF. The subsequent case study replaces the rule-based CGF with human pilots as the opponent to the adaptive CGF. The results from these two case studies show how positive outcome from learning against rule-based CGF can differ markedly from learning against human subjects for the same tasks. With a better understanding of the existing constraints, an adaptive CGF that performs well against rule-based CGF and human subjects can be designed

    A novel approach for targeting the left dorsolateral prefrontal cortex for transcranial magnetic stimulation using a cognitive task

    Full text link
    Repetitive transcranial magnetic stimulation (rTMS) has the potential to be developed as a novel treatment for cognitive dysfunction. However, current methods of targeting rTMS for cognition fail to consider inter-individual functional variability. This study explored the use of a cognitive task to individualise the target site for rTMS administered to the left dorsolateral prefrontal cortex (L-DLPFC). Twenty-five healthy participants were enrolled in a sham-controlled, crossover study. Participants performed a random letter generation task under the following conditions: no stimulation, sham and active ‘online’ rTMS applied to F3 (International 10–20 System) and four standardised surrounding sites. Across all sites combined, active ‘online’ rTMS was associated with significantly reduced performance compared to sham rTMS for unique trigrams (p = 0.012), but not for unique digrams (p > 0.05). Using a novel localisation methodology based on performance outcomes from both measures, a single optimal individualised site was identified for 92% [n = 23] of participants. At the individualised site, performance was significantly poorer compared to a common standard site (F3) and both control conditions (ps < 0.01). The current results suggest that this localisation methodology using a cognitive task could be used to individualise the rTMS target site at the L-DLPFC for modulating and potentially enhancing cognitive functioning

    Reliability of transcranial magnetic stimulation evoked potentials to detect the effects of theta-burst stimulation of the prefrontal cortex

    Full text link
    Background: Transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) is a novel method for assessing cortical properties outside the motor region. Theta burst stimulation (TBS), a form of repetitive TMS, can non-invasively modulate cortical excitability and has been increasingly used to treat psychiatric disorders by targetting the dorsolateral prefrontal cortex (DLPFC). The TMS-evoked potentials (TEPs) and local mean field power (LMFP) analyses have been used to evaluate local cortical excitability changes after TBS. However, it remains unclear whether TEPs can detect the neuromodulatory effects of TBS. Objectives: To confirm the reliability of TEP components and LMFP within and between sessions and to measure changes in neural excitability induced by intermittent (iTBS) and continuous TBS (cTBS) applied to the left DLPFC. Methods: Test-retest reliability of TEPs/LMFP and TBS-induced changes in cortical excitability were assessed in twenty-four healthy participants by stimulating the DLPFC in five separate sessions, once with sham and twice with iTBS and cTBS. EEG responses were recorded of 100 single TMS pulses before and after TBS, and the reproducibility measures were quantified with the concordance correlation coefficient (CCC). Results: The N100 and P200 components presented substantial reliability within the baseline block (CCCs>0.8) and moderate concordance between sessions (CCCmax> 0.6). Both N40 and P60 TEP amplitudes showed little concordance between sessions. Similar results were achieved using LMFP responses. Changes in TEP amplitudes after iTBS were marginally reliable for N100 (CCCmax = 0.52), P200 (CCCmax = 0.47) and P60 (CCCmax = 0.40), presenting only fair levels of concordance at specific time points. LMFP changes showed poor reproducibility after iTBS and cTBS. Conclusions: The present findings show that only the N100 and P200 components had good concordance between sessions. The reliability of earlier TEP components and LMF responses may have been affected by a sub-optimal removal of TMS-related artefacts. The poor reliability in detecting changes in neural excitability induced by TBS indicates that TEPs/LMFP do not provide a precise estimate of the changes in excitability in the DLPFC or, alternatively, that TBS did not induce consistent changes in neural excitability

    Neuromodulatory effects of theta burst stimulation to the prefrontal cortex

    Full text link
    Theta burst stimulation (TBS) is a new form of repetitive transcranial magnetic stimulation (TMS) capable of non-invasively modulating cortical excitability. In recent years TBS has been increasingly used as a neuroscientific investigative tool and therapeutic intervention for psychiatric disorders, in which the dorsolateral prefrontal cortex (DLPFC) is often the primary target. However, the neuromodulatory effects of TBS on prefrontal regions remain unclear. Here we share EEG and ECG recordings and structural MRI scans, including high-resolution DTI, from twenty-four healthy participants who received intermittent TBS (two sessions), continuous TBS (two sessions), and sham stimulation (one session) applied to the left DLPFC using a single-blinded crossover design. Each session includes eyes-open resting-state EEG and single-pulse TMS-EEG obtained before TBS and 2−, 15−, and 30-minutes post-stimulation. This dataset enables foundational basic science investigations into the neuromodulatory effects of TBS on the DLPFC

    Individualised Transcranial Magnetic Stimulation Targeting of the Left Dorsolateral Prefrontal Cortex for Enhancing Cognition: A Randomised Controlled Trial

    Full text link
    Repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to produce cognitive enhancing effects across different neuropsychiatric disorders; however, so far, these effects have been limited. This trial investigated the efficacy of using a novel individualised approach to target the left dorsolateral prefrontal cortex (L-DLPFC) for enhancing cognitive flexibility based on performance on a cognitive task. First, forty healthy participants had their single target site at the L-DLPFC determined based on each individual’s performance on a random letter generation task. Participants then received, in a cross-over single-blinded experimental design, a single session of intermittent theta burst stimulation (iTBS) to their individualised DLPFC target site, an active control site and sham iTBS. Following each treatment condition, participants completed the Task Switching task and Colour–Word Stroop test. There was no significant main effect of treatment condition on the primary outcome measure of switch reaction times from the Task Switching task [F = 1.16 (2, 21.6), p = 0.33] or for any of the secondary cognitive outcome measures. The current results do not support the use of our novel individualised targeting methodology for enhancing cognitive flexibility in healthy participants. Research into alternative methodological targeting approaches is required to further improve rTMS’s cognitive enhancing effects

    Efficacy and acceptability of transcranial direct current stimulation (tDCS) for major depressive disorder: An individual patient data meta-analysis

    Full text link
    We evaluated the efficacy and acceptability of transcranial direct current stimulation (tDCS) for treating acute depressive episodes using individual patient data that provide more precise estimates than aggregate data meta-analysis. A systematic review of placebo-controlled trials on tDCS as only intervention was conducted until December-2018. Data from each study was collated to estimate odds ratio (OR) and number needed to treat (NNT) of response and remission, and depression improvement. Endpoints were pre-determined. Nine eligible studies (572 participants), presenting moderate/high certainty of evidence, were included. Active tDCS was significantly superior to sham for response (30.9% vs. 18.9% respectively; OR = 1.96, 95%CI [1.30–2.95], NNT = 9), remission (19.9% vs. 11.7%, OR = 1.94 [1.19–3.16], NNT = 13) and depression improvement (effect size of β = 0.31, [0.15–0.47]). Moreover, continuous clinical improvement was observed even after the end of acute tDCS treatment. There were no differences in all-cause discontinuation rates and no predictors of response were identified. To conclude, active tDCS was statistically superior to sham in all outcomes, although its clinical effects were moderate

    An Integrated Antenna System for 4G and Millimeter-Wave 5G Future Handheld Devices

    Get PDF
    In this work, an integrated antenna system with Defected Ground Structure (DGS) is presented for Fourth Generation (4G) and millimeter (mm)-wave Fifth Generation (5G) wireless applications and handheld devices. The proposed design with overall dimensions of 110 mm x 75 mm is modeled on 0.508 mm thick Rogers RT/Duroid 5880 substrate. Radiating structure consists of antenna arrays excited by the T-shape 1 x 2 power divider/combiner. Dual bands for 4G centered at 3.8 GHz and 5.5 GHz are attained, whereas the 10-dB impedance bandwidth of 24.4 - 29.3 GHz is achieved for the 5G antenna array. In addition, a peak gain of 5.41 dBi is demonstrated across the operating bandwidth of the 4G antenna array. Similarly, for the 5G mm-wave configuration the attained peak gain is 10.29 dBi. Moreover, significant isolation is obtained between the two antenna modules ensuring efficient dual-frequency band operation using a single integrated solution. To endorse the concept, antenna prototype is fabricated and far-field measurements are procured. Simulated and measured results exhibit coherence. Also the proposed design is investigated for the beam steering capability of the mm-wave 5G antenna array using CST(R)MWS(R). The demonstrated structure offers various advantages including compactness, wide bandwidth, high gain, and planar configuration. Hence, the attained radiation characteristics prove the suitability of the proposed design for the current and future wireless handheld devices
    corecore