10 research outputs found

    Development of the Galaxy Chronic Obstructive Pulmonary Disease (COPD) Model Using Data from ECLIPSE: Internal Validation of a Linked-Equations Cohort Model

    Get PDF
    BACKGROUND: The recent joint International Society for Pharmacoeconomics and Outcomes Research / Society for Medical Decision Making Modeling Good Research Practices Task Force emphasized the importance of conceptualizing and validating models. We report a new model of chronic obstructive pulmonary disease (COPD) (part of the Galaxy project) founded on a conceptual model, implemented using a novel linked-equation approach, and internally validated. METHODS: An expert panel developed a conceptual model including causal relationships between disease attributes, progression, and final outcomes. Risk equations describing these relationships were estimated using data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study, with costs estimated from the TOwards a Revolution in COPD Health (TORCH) study. Implementation as a linked-equation model enabled direct estimation of health service costs and quality-adjusted life years (QALYs) for COPD patients over their lifetimes. Internal validation compared 3 years of predicted cohort experience with ECLIPSE results. RESULTS: At 3 years, the Galaxy COPD model predictions of annual exacerbation rate and annual decline in forced expiratory volume in 1 second fell within the ECLIPSE data confidence limits, although 3-year overall survival was outside the observed confidence limits. Projections of the risk equations over time permitted extrapolation to patient lifetimes. Averaging the predicted cost/QALY outcomes for the different patients within the ECLIPSE cohort gives an estimated lifetime cost of £25,214 (undiscounted)/£20,318 (discounted) and lifetime QALYs of 6.45 (undiscounted/5.24 [discounted]) per ECLIPSE patient. CONCLUSIONS: A new form of model for COPD was conceptualized, implemented, and internally validated, based on a series of linked equations using epidemiological data (ECLIPSE) and cost data (TORCH). This Galaxy model predicts COPD outcomes from treatment effects on disease attributes such as lung function, exacerbations, symptoms, or exercise capacity; further external validation is required

    Severe, eosinophilic asthma in primary care in Canada: a longitudinal study of the clinical burden and economic impact based on linked electronic medical record data

    No full text
    Abstract Background Stratification of patients with severe asthma by blood eosinophil counts predicts responders to anti-interleukin (IL)-5 (mepolizumab and reslizumab) and anti-IL-5 receptor α (benralizumab) therapies. This study characterized patients with severe asthma who could qualify for these biologics in a primary care setting. Methods We retrospectively selected patients from July 1, 2010, to June 30, 2014, using a linked electronic medical records (EMR) database (IMS Evidence 360 EMR Canada) for > 950,000 patients in primary care in Ontario, Canada. Patients aged ≥ 12 years with ≥ 2 documented asthma diagnoses were identified as having severe asthma based on prescriptions for high-dosage inhaled corticosteroids (ICS) plus either a leukotriene receptor antagonist, long-acting β2-agonist (LABA), or theophylline filled on the same day. Patients’ asthma was considered severe also if they received a prescription for ICS with oral corticosteroids (OCS) or an additional prescription for omalizumab. Patient characteristics, asthma-related medications, and blood eosinophil counts were captured using observed care patterns for the year prior to ICS/LABA and/or OCS prescription. Health care resource use (HCRU) and costs were captured throughout the 1-year follow-up period. Results We identified 212 patients who met the criteria for severe asthma. These patients required an average of 6.5 physician visits during the 1-year follow-up period (95% confidence interval 5.7–7.3), and 20 (9%) were referred to respiratory specialists. Overall, 56 patients (26%) with severe asthma had complete blood counts, of whom 23 (41%) had blood eosinophil counts ≥ 300 cells/μL and might be considered for anti-eosinophil therapies. Patients with severe asthma and blood eosinophil counts ≥ 300 cells/μL had more respiratory specialist referrals (17% vs. 12%) than patients with blood eosinophils < 300 cells/μL. Conclusions Our data suggest that during 2010–2014, Ontario primary care patients with severe asthma and high blood eosinophil counts had greater HRCU than those with lower counts. Approximately 41% of patients with severe asthma could qualify for anti-eosinophil drugs based on blood eosinophil counts. However, the eosinophilic status of most patients was unknown. It is appropriate to increase awareness of the use of blood eosinophil counts to identify patients who could be considered for anti-eosinophil therapies

    Roles of Plant Endosphere Microbes in Agriculture-A Review

    No full text
    corecore