1,379 research outputs found

    Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    Get PDF
    BACKGROUND: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. OBJECTIVES: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. METHODS: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. RESULTS: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. CONCLUSIONS: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659

    Holographic Vitrification

    Get PDF
    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.Comment: 100 pages, 25 figure

    Experimental investigation, techno-economic analysis and environmental impact of bioethanol production from banana stem

    Full text link
    © 2019 by the authors. Banana stem is being considered as the second largest waste biomass in Malaysia. Therefore, the environmental challenge of managing this huge amount of biomass as well as converting the feedstock into value-added products has spurred the demand for diversified applications to be implemented as a realistic approach. In this study, banana stem waste was experimented for bioethanol generation via hydrolysis and fermentation methods with the presence of Saccharomyces cerevisiae (yeast) subsequently. Along with the experimental analysis, a realistic pilot scale application of electricity generation from the bioethanol has been designed by HOMER software to demonstrate techno-economic and environmental impact. During sulfuric acid and enzymatic hydrolysis, the highest glucose yield was 5.614 and 40.61 g/L, respectively. During fermentation, the maximum and minimum glucose yield was 62.23 g/L at 12 h and 0.69 g/L at 72 h, respectively. Subsequently, 99.8% pure bioethanol was recovered by a distillation process. Plant modeling simulated operating costs 65,980 US/y,netproductioncost869347US/y, net production cost 869347 US and electricity cost 0.392 US$/kWh. The CO2 emission from bioethanol was 97,161 kg/y and SO2 emission was 513 kg/y which is much lower than diesel emission. The overall bioethanol production from banana stem and application of electricity generation presented the approach economically favorable and environmentally benign

    Phytochemical Screening and In vitro Evaluation of Pharmacological Activities of Aphanamixis polystachya (Wall) Parker Fruit Extracts

    Get PDF
    Purpose: To investigate the crude n-hexane, ethyl acetate and methanol extracts of Aphanamixis polystachya fruit for their cytotoxic, antimicrobial, antioxidant and thrombolytic activities.Methods: The fruit extracts were screened for major phytochemical compounds using in vitro established procedures. Antimicrobial and cytotoxic studies of the fruit extracts were conducted using disc diffusion and brine shrimp lethality bioassay methods, respectively, while an in vitro thrombolytic model was used to assess the clot lysis effect of the extracts with streptokinase as positive control. Antioxidant activity was evaluated by free radical scavenging activity using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide assay as well as total phenolic content.Results: The fruit extracts were a rich source of phytochemicals and among the extracts n-hexane extract showed highest antimicrobial activity against Shigella dysenteriae (zone of inhibition: 9.7±0.2 mm) and Candida albicans (zone of inhibition: 8.8±0.3 mm) at a concentration of 1000ìg/disc, whereas at the same concentration methanol extract showed highest zone of inhibition, 10.1±0.4mm, against Staphylococcus aureus. Compared to potassium permanganate with a median lethal concentration(LC50) of 13.23 ìg/ml in the brine shrimp lethality assay, the LC50 of n-hexane, ethyl acetate and methanol extracts were 15.77, 17.51 and 141.37 ìg/ml, respectively. All the extracts showed significant clot lysis activity (p < 0.001) with reference to negative control and % clot lysis of the extracts were approximately 13. Notable antioxidant activity of the methanol extract was observed unlike the other extracts.Conclusion: The results of the study demonstrated the potential cytotoxic, thrombolytic and antioxidant activities of the fruit extracts of A.  polystachya and therefore further studies on the isolation and identification of active principles are required.Keywords: Aphanamixis polystachya, Antimicrobial, Antioxidant, Cytotoxic, Thrombolytic, Phytochemical screenin

    Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome

    Get PDF
    Introduction: Intravenous (IV) fluids may be associated with complications not often attributed to fluid type. Fluids with high chloride concentrations such as 0.9 % saline have been associated with adverse outcomes in surgery and critical care. Understanding the association between fluid type and outcomes in general hospitalized patients may inform selection of fluid type in clinical practice. We sought to determine if the type of IV fluid administered to patients with systemic inflammatory response syndrome (SIRS) is associated with outcome. Methods: This was a propensity-matched cohort study in hospitalized patients receiving at least 500 mL IV crystalloid within 48 hours of SIRS. Patient data was extracted from a large multi-hospital electronic health record database between January 1, 2009, and March 31, 2013. The primary outcome was in-hospital mortality. Secondary outcomes included length of stay, readmission, and complications measured by ICD-9 coding and clinical definitions. Outcomes were adjusted for illness severity using the Acute Physiology Score. Of the 91,069 patients meeting inclusion criteria, 89,363 (98 %) received 0.9 % saline whereas 1706 (2 %) received a calcium-free balanced solution as the primary fluid. Results: There were 3116 well-matched patients, 1558 in each cohort. In comparison with the calcium-free balanced cohort, the saline cohort experienced greater in-hospital mortality (3.27 % vs. 1.03 %, P <0.001), length of stay (4.87 vs. 4.38 days, P = 0.016), frequency of readmission at 60 (13.54 vs. 10.91, P = 0.025) and 90 days (16.56 vs. 12.58, P = 0.002) and frequency of cardiac, infectious, and coagulopathy complications (all P <0.002). Outcomes were defined by administrative coding and clinically were internally consistent. Patients in the saline cohort received more chloride and had electrolyte abnormalities requiring replacement more frequently (P <0.001). No differences were found in acute renal failure. Conclusions: In this large electronic health record, the predominant use of 0.9 % saline in patients with SIRS was associated with significantly greater morbidity and mortality compared with predominant use of balanced fluids. The signal is consistent with that reported previously in perioperative and critical care patients. Given the large population of hospitalized patients receiving IV fluids, these differences may confer treatment implications and warrant corroboration via large clinical trials. Trial registration: NCT02083198 clinicaltrials.gov; March 5, 201

    Effect of bio-engineering on size, shape, composition and rigidity of bacterial microcompartments

    Get PDF
    Bacterial microcompartments (BMCs) are proteinaceous organelles that are found in a broad range of bacteria and are composed of an outer shell that encases an enzyme cargo representing a specific metabolic process. The outer shell is made from a number of different proteins that form hexameric and pentameric tiles, which interact to allow the formation of a polyhedral edifice. We have previously shown that the Citrobacter freundii BMC associated with 1,2-propanediol utilization can be transferred into Escherichia coli to generate a recombinant BMC and that empty BMCs can be formed from just the shell proteins alone. Herein, a detailed structural and proteomic characterization of the wild type BMC is compared to the recombinant BMC and a number of empty BMC variants by 2D-gel electrophoresis, mass spectrometry, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Specifically, it is shown that the wild type BMC and the recombinant BMC are similar in terms of composition, size, shape and mechanical properties, whereas the empty BMC variants are shown to be smaller, hollow and less malleable

    A Decision Support Framework for Resilient and Sustainable Service Design

    Full text link
    Resilient and sustainable service design is essential for ensuring the longevity and effectiveness of service systems. However, existing literature often neglects key aspects such as articulating resilience attributes and integrating sustainability dimensions. This study proposes a decision support model for a resilient-sustainable service design that merges service design principles with resilient system attributes and organizational sustainability goals. The framework incorporates a multi-objective mathematical programming model and a multi-phased Quality Function Deployment (QFD) approach to derive Pareto optimal solutions using the Brute Force algorithm. Applied in the m-health service sector in Bangladesh, the study reveals significant challenges, including limited awareness of services and logistical inefficiencies. To address these issues, flexible strategies such as demand planning and service innovation are implemented. The findings have direct implications for the improvement of service delivery processes and underscore the importance of considering both resilience and sustainability. While focusing on Bangladesh s m-health sector, the insights gained have broader relevance globally. The integration of resilience and sustainability principles into service design is crucial for addressing complex challenges across sectors and regions. Future research could involve longitudinal studies to capture evolving resilience strategies and explore resilient-sustainable service systems from a broader perspective. This entails examining various factors such as technological advancements and socio-economic dynamics shaping resilient and sustainable service ecosystems

    Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene

    Get PDF
    © 2019 The Authors. Avian pathogenic Escherichia coli (APEC) cause widespread economic losses in poultry production and are potential zoonotic pathogens. Genome sequences of 95 APEC from commercial poultry operations in four Australian states that carried the class 1 integrase gene intI1, a proxy for multiple drug resistance (MDR), were characterized. Sequence types ST117 (22/95), ST350 (10/95), ST429 and ST57 (each 9/95), ST95 (8/95) and ST973 (7/95) dominated, while 24 STs were represented by one or two strains. FII and FIB repA genes were the predominant (each 93/95, 98 %) plasmid incompatibility groups identified, but those of B/O/K/Z (25/95, 26 %) and I1 (24/95, 25 %) were also identified frequently. Virulence-associated genes (VAGs) carried by ColV and ColBM virulence plasmids, including those encoding protectins [iss (91/95, 96 %), ompT (91/95, 96 %) and traT (90/95, 95 %)], iron-acquisition systems [sitA (88/95, 93 %), etsA (87/95, 92 %), iroN (84/95, 89 %) and iucD/iutA (84/95, 89 %)] and the putative avian haemolysin hylF (91/95, 96 %), featured prominently. Notably, mobile resistance genes conferring resistance to fluoroquinolones, colistin, extended-spectrum b-lactams and carbapenems were not detected in the genomes of these 95 APEC but carriage of the sulphonamide resistance gene, sul1 (59/95, 63 %), the trimethoprim resistance gene cassettes dfrA5 (48/95, 50 %) and dfrA1 (25/95, 27 %), the tetracycline resistance determinant tet(A) (51/95, 55 %) and the ampicillin resistance genes bla TEM-1A/B/C (48/95, 52 %) was common. IS26 (77/95, 81 %), an insertion element known to capture and mobilize a wide spectrum of antimicrobial resistance genes, was also frequently identified. These studies provide a baseline snapshot of drug-resistant APEC in Australia and their role in the carriage of ColV-like virulence plasmids

    Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B

    Get PDF
    The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B. Methodology/Principal findings We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress, generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2 − (mitosox) were measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further,study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host macrophag
    corecore