15 research outputs found

    A Drosophila mutant of LETM1, a candidate gene for seizures in Wolf-Hirschhorn syndrome

    No full text
    Human Wolf-Hirschhorn syndrome (WHS) is a multigenic disorder resulting from a hemizygous deletion on chromosome 4. LETM1 is the best candidate gene for seizures, the strongest haploinsufficiency phenotype of WHS patients. Here, we identify the Drosophila gene CG4589 as the ortholog of LETM1 and name the gene DmLETM1. Using RNA interference approaches in both Drosophila melanogaster cultured cells and the adult fly, we have assayed the effects of down-regulating the LETM1 gene on mitochondrial function. We also show that DmLETM1 complements growth and mitochondrial K(+)/H(+) exchange (KHE) activity in yeast deficient for LETM1. Genetic studies allowing the conditional inactivation of LETM1 function in specific tissues demonstrate that the depletion of DmLETM1 results in roughening of the adult eye, mitochondrial swelling and developmental lethality in third-instar larvae, possibly the result of deregulated mitophagy. Neuronal specific down-regulation of DmLETM1 results in impairment of locomotor behavior in the fly and reduced synaptic neurotransmitter release. Taken together our results demonstrate the function of DmLETM1 as a mitochondrial osmoregulator through its KHE activity and uncover a pathophysiological WHS phenotype in the model organism D. melanogaster

    Hypertrophic Scarring and Keloids: Pathomechanisms and Current and Emerging Treatment Strategies

    No full text
    Excessive scars form as a result of aberrations of physiologic wound healing and may arise following any insult to the deep dermis. By causing pain, pruritus and contractures, excessive scarring significantly affects the patient’s quality of life, both physically and psychologically. Multiple studies on hypertrophic scar and keloid formation have been conducted for decades and have led to a plethora of therapeutic strategies to prevent or attenuate excessive scar formation. However, most therapeutic approaches remain clinically unsatisfactory, most likely owing to poor understanding of the complex mechanisms underlying the processes of scarring and wound contraction. In this review we summarize the current understanding of the pathophysiology underlying keloid and hypertrophic scar formation and discuss established treatments and novel therapeutic strategies

    The Genetics of Mitochondrial Fusion and Fission

    No full text
    corecore