8 research outputs found

    An Approximate Dynamic Programming Approach to Urban Freight Distribution with Batch Arrivals

    Get PDF
    We study an extension of the delivery dispatching problem (DDP) with time windows, applied on LTL orders arriving at an urban consolidation center. Order properties (e.g., destination, size, dispatch window) may be highly varying, and directly distributing an incoming order batch may yield high costs. Instead, the hub operator may wait to consolidate with future arrivals. A consolidation policy is required to decide which orders to ship and which orders to hold. We model the dispatching problem as a Markov decision problem. Dynamic Programming (DP) is applied to solve toy-sized instances to optimality. For larger instances, we propose an Approximate Dynamic Programming (ADP) approach. Through numerical experiments, we show that ADP closely approximates the optimal values for small instances, and outperforms two myopic benchmark policies for larger instances. We contribute to literature by (i) formulating a DDP with dispatch windows and (ii) proposing an approach to solve this DDP

    Smart Urban Transit Systems: From Integrated Framework to Interdisciplinary Perspective

    No full text

    Colitis ulcerosa

    No full text

    Colonic Motility: From Bench Side to Bedside

    No full text
    corecore