7 research outputs found

    Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model

    Get PDF
    Induced pluripotent stem cells (iPSC) have been the focus of several studies due to their wide range of application, including in cellular therapy. The use of iPSC in regenerative medicine is limited by their tumorigenic potential. Extracellular vesicles (EV) derived from stem cells have been shown to support renal recovery after injury. However, no investigation has explored the potential of iPSC-EV in the treatment of kidney diseases. To evaluate this potential, we submitted renal tubule cells to hypoxia-reoxygenation injury, and we analyzed cell death rate and changes in functional mitochondria mass. An in vivo model of ischemia-reperfusion injury was used to evaluate morphological and functional alterations. Gene array profile was applied to investigate the mechanism involved in iPSC-EV effects. In addition, EV derived from adipose mesenchymal cells (ASC-EV) were also used to compare the potential of iPSC-EV in support of tissue recovery. The results showed that iPSC-EV were capable of reducing cell death and inflammatory response with similar efficacy than ASC-EV. Moreover, iPSC-EV protected functional mitochondria and regulated several genes associated with oxidative stress. Taken together, these results show that iPSC can be an alternative source of EV in the treatment of different aspects of kidney disease

    Association between Genetic Variants and Cisplatin-Induced Nephrotoxicity: A Genome-Wide Approach and Validation Study

    Get PDF
    This study aims to evaluate genetic risk factors for cisplatin-induced nephrotoxicity by investigating not previously studied genetic risk variants and further examining previously reported genetic associations. A genome-wide study (GWAS) was conducted in genetically estimated Europeans in a discovery cohort of cisplatin-treated adults from Toronto, Canada, followed by a candidate gene approach in a validation cohort from the Netherlands. In addition, previously reported genetic associations were further examined in both the discovery and validation cohorts. The outcome, nephrotoxicity, was assessed in two ways: (i) decreased estimated glomerular filtration rate (eGFR), calculated using the Chronic Kidney Disease Epidemiology Collaboration formula (CKD-EPI) and (ii) increased serum creatinine according to the Common Terminology Criteria for Adverse Events v4.03 for acute kidney injury (AKI-CTCAE). Four different Illumina arrays were used for genotyping. Standard quality control was applied for pre- and post-genotype imputation data. In the discovery cohort (n = 608), five single-nucleotide polymorphisms (SNPs) reached genome-wide significance. The A allele in rs4388268 (minor allele frequency = 0.23), an intronic variant of the BACH2 gene, was consistently associated with increased risk of cisplatin-induced nephrotoxicity in both definitions, meeting genome-wide significance (ÎČ = −8.4, 95% CI −11.4–−5.4, p = 3.9 × 10−8) for decreased eGFR and reaching suggestive association (OR = 3.9, 95% CI 2.3–6.7, p = 7.4 × 10−7) by AKI-CTCAE. In the validation cohort of 149 patients, this variant was identified with the same direction of effect (eGFR: ÎČ = −1.5, 95% CI −5.3–2.4, AKI-CTCAE: OR = 1.7, 95% CI 0.8–3.5). Findings of our previously published candidate gene study could not be confirmed after correction for multiple testing. Genetic predisposition of BACH2 (rs4388268) might be important in the development of cisplatin-induced nephrotoxicity, indicating opportunities for mechanistic understanding, tailored therapy and preventive strategies.Medicine, Faculty ofPharmaceutical Sciences, Faculty ofNon UBCPediatrics, Department ofReviewedFacultyResearche

    Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma

    No full text
    Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes

    Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review

    No full text
    corecore