161 research outputs found

    Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities

    Get PDF
    In comparing gene expression of normal and CML CD34+ quiescent (G0) cell, 292 genes were downregulated and 192 genes upregulated in the CML/G0 Cells. The differentially expressed genes were grouped according to their reported functions, and correlations were sought with biological differences previously observed between the same groups. The most relevant findings include the following. (i) CML G0 cells are in a more advanced stage of development and more poised to proliferate than normal G0 cells. (ii) When CML G0 cells are stimulated to proliferate, they differentiate and mature more rapidly than normal counterpart. (iii) Whereas normal G0 cells form only granulocyte/monocyte colonies when stimulated by cytokines, CML G0 cells form a combination of the above and erythroid clusters and colonies. (iv) Prominin-1 is the gene most downregulated in CML G0 cells, and this appears to be associated with the spontaneous formation of erythroid colonies by CML progenitors without EPO

    Quantifying the contamination by old main-sequence stars in young moving groups: the case of the Local Association

    Get PDF
    The associations and moving groups of young stars are excellent laboratories for investigating stellar formation in the solar neighborhood. Previous results have confirmed that a non-negligible fraction of old main-sequence stars is present in the lists of possible members of young stellar kinematic groups. A detailed study of the properties of these samples is needed to separate the young stars from old main-sequence stars with similar space motion, and identify the origin of these structures. We used stars possible members of the young (~ 10 - 650 Myr) moving groups from the literature. To determine the age of the stars, we used several suitable age indicators for young main sequence stars, i.e., X-ray fluxes and other photometric data. We also used spectroscopic data, in particular the equivalent width of the lithium line Li I and Halpha, to constrain the range of ages of the stars. By combining photometric and spectroscopic data, we were able to separate the young stars (10 - 650 Myr) from the old (> 1 Gyr) field ones. We found, in particular, that the Local Association is contaminated by old field stars at the level of ~30%. This value must be considered as the contamination for our particular sample, and not of the entire Local Association. For other young moving groups, it is more difficult to estimate the fraction of old stars among possible members. However, the level of X-ray emission can, at least, help to separate two age populations: stars with <200 Myr and stars older than this. Our results are consistent with a scenario in which the moving groups contain both groups of young stars formed in a recent star-formation episode and old field stars with similar space motion. Only by combining X-ray and optical spectroscopic data is it possible to distinguish between these two age populations.Comment: 7 pages, 7 figures. Accepted for publication in A&

    The GAPS Programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet hosting binary

    Get PDF
    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature TC=401741T_{\rm C}=40-1741 K, achieving typical precisions of 0.07\sim 0.07 dex. The North component shows abundances in all elements higher by +0.067±0.032+0.067 \pm 0.032 dex on average, with a mean difference of +0.078 dex for elements with TC>800T_{\rm C} > 800 K. The significance of the XO-2N abundance difference relative to XO-2S is at the 2σ2\sigma level for almost all elements. We discuss the possibility that this result could be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of MM_{\oplus} in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of (4.7±0.9)×105(4.7 \pm 0.9) \times 10^{-5} dex K1^{-1}, which could mean that both components have not formed terrestrial planets, but that first experienced the accretion of rocky core interior to the subsequent giant planets.Comment: 10 pages, 5 figures, accepted by Astronomy & Astrophysics. Numbering of the series change

    The GAPS Programme with HARPS-N@TNG IX. The multi-planet system KELT-6: detection of the planet KELT-6 c and measurement of the Rossiter-McLaughlin effect for KELT-6 b

    Get PDF
    Aims. For more than 1.5 years we monitored spectroscopically the star KELT-6 (BD+312447), known to host the transiting hot Saturn KELT-6b, because a previously observed long-term trend in radial velocity time series suggested the existence of an outer companion. Methods. We collected a total of 93 new spectra with the HARPS-N and TRES spectrographs. A spectroscopic transit of KELT-6b was observed with HARPS-N, and simultaneous photometry was obtained with the IAC-80 telescope. Results. We proved the existence of an outer planet with a mininum mass Mp_{\rm p}sini=3.71±\pm0.21 MJup_{\rm Jup} and a moderately eccentric orbit (e=0.210.036+0.039e=0.21_{-0.036}^{+0.039}) of period P\sim3.5 years. We improved the orbital solution of KELT-6b and obtained the first measurement of the Rossiter-McLaughlin effect, showing that the planet has a likely circular, prograde, and slightly misaligned orbit, with a projected spin-orbit angle λ\lambda=-36±\pm11 degrees. We improved the KELT-6b transit ephemeris from photometry, and we provided new measurements of the stellar parameters. KELT-6 appears as an interesting case to study the formation and evolution of multi-planet systems.Comment: Letter, 4 figures, accepted for publication in A&A. Some language editing and numbering of the paper series changed (from X to IX

    The GAPS Programme with HARPS-N@TNG VI: The Curious Case of TrES-4b

    Get PDF
    We revisit the TrES-4 system parameters based on high-precision HARPS-N radial-velocity measurements and new photometric light curves. A combined spectroscopic and photometric analysis allows us to determine a spectroscopic orbit with an amplitude K=51±3K=51\pm3 m s1^{-1}. The derived mass of TrES-4b is found to be Mp=0.49±0.04MJupM_{\rm p} = 0.49\pm0.04 \rm M_{Jup}, significantly lower than previously reported. Combined with the large radius (Rp=1.840.09+0.08RJupR_{\rm p} = 1.84_{-0.09}^{+0.08} \rm R_{Jup}) inferred from our analysis, TrES-4b becomes the second-lowest density transiting hot Jupiter known. We discuss several scenarios to explain the puzzling discrepancy in the mass of TrES-4b in the context of the exotic class of highly inflated transiting giant planets.Comment: 5 pages, 4 figures, Letter accepted for publication in Astronomy and Astrophysic

    Neutral Iron Emission Lines From The Day-side Of KELT-9b -- The GAPS Programme With HARPS-N At TNG XX

    Get PDF
    We present the first detection of atomic emission lines from the atmosphere of an exoplanet. We detect neutral iron lines from the day-side of KELT-9b (Teq \sim 4, 000 K). We combined thousands of spectrally resolved lines observed during one night with the HARPS-N spectrograph (R \sim 115, 000), mounted at the Telescopio Nazionale Galileo. We introduce a novel statistical approach to extract the planetary parameters from the binary mask cross-correlation analysis. We also adapt the concept of contribution function to the context of high spectral resolution observations, to identify the location in the planetary atmosphere where the detected emission originates. The average planetary line profile intersected by a stellar G2 binary mask was found in emission with a contrast of 84 ±\pm 14 ppm relative to the planetary plus stellar continuum (40 ±\pm 5%\% relative to the planetary continuum only). This result unambiguously indicates the presence of an atmospheric thermal inversion. Finally, assuming a modelled temperature profile previously published (Lothringer et al. 2018), we show that an iron abundance consistent with a few times the stellar value explains the data well. In this scenario, the iron emission originates at the 10310^{-3}-10510^{-5} bar level.Comment: Accepted for publication on ApJL; 19 pages, 4 figures, 3 table

    The GAPS programme with HARPS-N@TNG IV: A planetary system around XO-2S

    Get PDF
    We performed an intensive radial velocity monitoring of XO-2S, the wide companion of the transiting planet-host XO-2N, using HARPS-N at TNG in the framework of the GAPS programme. The radial velocity measurements indicate the presence of a new planetary system formed by a planet that is slightly more massive than Jupiter at 0.48 au and a Saturn-mass planet at 0.13 au. Both planetary orbits are moderately eccentric and were found to be dynamically stable. There are also indications of a long-term trend in the radial velocities. This is the first confirmed case of a wide binary whose components both host planets, one of which is transiting, which makes the XO-2 system a unique laboratory for understanding the diversity of planetary systems.Comment: 7 pages, 3 figures, accepted on A&A Lette

    Cold Jupiters and improved masses in 38 Kepler and K2 small planet systems from 3661 HARPS-N radial velocities. No excess of cold Jupiters in small planet systems

    Full text link
    The exoplanet population characterized by relatively short orbital periods (P<100P<100 d) around solar-type stars is dominated by super-Earths and sub-Neptunes. However, these planets are missing in our Solar System and the reason behind this absence is still unknown. Two theoretical scenarios invoke the role of Jupiter as the possible culprit: Jupiter may have acted as a dynamical barrier to the inward migration of sub-Neptunes from beyond the water iceline; alternatively, Jupiter may have reduced considerably the inward flux of material (pebbles) required to form super-Earths inside that iceline. Both scenarios predict an anti-correlation between the presence of small planets (SPs) and that of cold Jupiters (CJs) in exoplanetary systems. To test that prediction, we homogeneously analyzed the radial-velocity (RV) measurements of 38 Kepler and K2 transiting SP systems gathered over almost 10 years with the HARPS-N spectrograph, as well as publicly available RVs collected with other facilities. We detected five CJs in three systems, two in Kepler-68, two in Kepler-454, and a very eccentric one in K2-312. We derived an occurrence rate of 9.32.9+7.7%9.3^{+7.7}_{-2.9}\% for CJs with 0.313 MJup0.3-13~M_{Jup} and 1-10 AU, which is lower but still compatible at 1.3σ1.3\sigma with that measured from RV surveys for solar-type stars, regardless of the presence or absence of SPs. The sample is not large enough to draw a firm conclusion about the predicted anti-correlation between SPs and CJs; nevertheless, we found no evidence of previous claims of an excess of CJs in SP systems. As an important by-product of our analyses, we homogeneously determined the masses of 64 Kepler and K2 small planets, reaching a precision better than 5, 7.5 and 10σ\sigma for 25, 13 and 8 planets, respectively. Finally, we release the 3661 HARPS-N radial velocities used in this work to the scientific community. [Abridged]Comment: 21 pages, 10 figures, 10 tables, published in Astronomy and Astrophysics. The updated version of the article takes into account the A&A language editing and guidelines. Tables 1, A.1 and full Table 2 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/677/A3

    Cold Jupiters and improved masses in 38 Kepler and K2 small-planet systems from 3661 high-precision HARPS-N radial velocities. No excess of cold Jupiters in small-planet systems

    Get PDF
    The exoplanet population characterized by relatively short orbital periods (P<100P<100 d) around solar-type stars is dominated by super-Earths and sub-Neptunes. However, these planets are missing in our Solar System and the reason behind this absence is still unknown. Two theoretical scenarios invoke the role of Jupiter as the possible culprit: Jupiter may have acted as a dynamical barrier to the inward migration of sub-Neptunes from beyond the water iceline; alternatively, Jupiter may have reduced considerably the inward flux of material (pebbles) required to form super-Earths inside that iceline. Both scenarios predict an anti-correlation between the presence of small planets (SPs) and that of cold Jupiters (CJs) in exoplanetary systems. To test that prediction, we homogeneously analyzed the radial-velocity (RV) measurements of 38 Kepler and K2 transiting SP systems gathered over almost 10 years with the HARPS-N spectrograph, as well as publicly available RVs collected with other facilities. We detected five CJs in three systems, two in Kepler-68, two in Kepler-454, and a very eccentric one in K2-312. We derived an occurrence rate of 9.32.9+7.7%9.3^{+7.7}_{-2.9}\% for CJs with 0.313 MJup0.3-13~M_{Jup} and 1-10 AU, which is lower but still compatible at 1.3σ1.3\sigma with that measured from RV surveys for solar-type stars, regardless of the presence or absence of SPs. The sample is not large enough to draw a firm conclusion about the predicted anti-correlation between SPs and CJs; nevertheless, we found no evidence of previous claims of an excess of CJs in SP systems. As an important by-product of our analyses, we homogeneously determined the masses of 64 Kepler and K2 small planets, reaching a precision better than 5, 7.5 and 10σ\sigma for 25, 13 and 8 planets, respectively. Finally, we release the 3661 HARPS-N radial velocities used in this work to the scientific community. [Abridged]Comment: 21 pages, 10 figures, 10 tables, published in Astronomy and Astrophysics. The updated version of the article takes into account the A&A language editing and guidelines. Tables 1, A.1 and full Table 2 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/677/A3

    The GAPS programme at TNG XLV. A massive brown dwarf orbiting the active M dwarf TOI-5375

    Full text link
    Context. Massive substellar companions orbiting active low-mass stars are rare. They, however, offer an excellent opportunity to study the main mechanisms involved in the formation and evolution of substellar objects. Aims. We aim to unravel the physical nature of the transit signal observed by the TESS space mission on the active M dwarf TOI-5375. Methods. We analysed the available TESS photometric data as well as high-resolution (R \sim 115000) HARPS-N spectra. We combined these data to characterise the star TOI-5375 and to disentangle signals related to stellar activity from the companion transit signal in the light-curve data. We ran an MCMC analysis to derive the orbital solution and apply state-of-the-art Gaussian process regression to deal with the stellar activity signal. Results. We reveal the presence of a companion in the brown dwarf / very-low-mass star boundary orbiting around the star TOI-5375. The best-fit model corresponds to a companion with an orbital period of 1.721564 ±\pm 106^{\rm -6} d, a mass of 77 ±\pm 8 MJM_{\rm J} and a radius of 0.99 ±\pm 0.16 RJR_{\rm J}. We derive a rotation period for the host star of 1.9692 ±\pm 0.0004 d, and we conclude that the star is very close to synchronising its rotation with the orbital period of the companion.Comment: Submitted to Astronomy & Astrophysics (under review
    corecore