23 research outputs found

    Tension of knotted surgical sutures shows tissue specific rapid loss in a rodent model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Every surgical suture compresses the enclosed tissue with a tension that depends from the knotting force and the resistance of the tissue. The aim of this study was to identify the dynamic change of applied suture tension with regard to the tissue specific cutting reaction.</p> <p>Methods</p> <p>In rabbits we placed single polypropylene sutures (3/0) in skin, muscle, liver, stomach and small intestine. Six measurements for each single organ were determined by tension sensors for 60 minutes. We collected tissue specimens to analyse the connective tissue stability by measuring the collagen/protein content.</p> <p>Results</p> <p>We identified three phases in the process of suture loosening. The initial rapid loss of the first phase lasts only one minute. It can be regarded as cutting through damage of the tissue. The percentage of lost tension is closely related to the collagen content of the tissue (r = -0.424; p = 0.016). The second phase is characterized by a slower decrease of suture tension, reflecting a tissue specific plastic deformation. Phase 3 is characterized by a plateau representing the remaining structural stability of the tissue. The ratio of remaining tension to initial tension of phase 1 is closely related to the collagen content of the tissue (r = 0.392; p = 0.026).</p> <p>Conclusions</p> <p>Knotted non-elastic monofilament sutures rapidly loose tension. The initial phase of high tension may be narrowed by reduction of the surgeons' initial force of the sutures' elasticity to those of the tissue. Further studies have to confirm, whether reduced tissue compression and less local damage permits improved wound healing.</p

    A closer look at neuron interaction with track-etched microporous membranes

    Get PDF
    Microporous membranes support the growth of neurites into and through micro-channels, providing a different type of neural growth platform to conventional dish cultures. Microporous membranes are used to support various types of culture, however, the role of pore diameter in relation to neurite growth through the membrane has not been well characterised. In this study, the human cell line (SH-SY5Y) was differentiated into neuron-like cells and cultured on track-etched microporous membranes with pore and channel diameters selected to accommodate neurite width (0.8 ”m to 5 ”m). Whilst neurites extended through all pore diameters, the extent of neurite coverage on the non-seeded side of the membranes after 5 days in culture was found to be directly proportional to channel diameter. Neurite growth through membrane pores reduced significantly when neural cultures were non-confluent. Scanning electron microscopy revealed that neurites bridged pores and circumnavigated pore edges – such that the overall likelihood of a neurite entering a pore channel was decreased. These findings highlight the role of pore diameter, cell sheet confluence and contact guidance in directing neurite growth through pores and may be useful in applications that seek to use physical substrates to maintain separate neural populations whilst permitting neurite contact between cultures

    Fabrication of cell container arrays with overlaid surface topographies

    Get PDF
    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches

    Cell adhesion to textured silicone surfaces: The influence of time of adhesion and texture on focal contact and fibronectin fibril formation

    Full text link
    Cell adhesion and spreading on biomaterials is a key issue in the study of cell-biomaterial interactions. With the development of new disciplines within biomaterials research such as tissue engineering and cellular therapy, information at molecular and structural levels is needed in order to conceive and design biomaterials that elicit specific, functional cell responses. In this study we determined the formation of focal adhesions and fibronectin fibrillar structures by human fibroblasts and human umbilical vein endothelial cells adhered to fibronectin-precoated, smooth, and textured silicones as a function of time. Textures consisted of parallel ridges and 0.5 mu m deep grooves with a width of 2, 5, and 10 mu m. In addition, pillar and well constructs were used. Cells assembled focal adhesions within the first 24 h of adhesion. Fibronectin production and assembly resulted in a dense fibrillar network at day 6. Initial focal adhesion density and size were dictated by the presence of the texture. Topography also influenced initial fibronectin deposition, although the differences did not result in apparent differences in fibronectin networks after 6 days of incubation. Without fibronectin preadsorption, cells did not proliferate on the silicone surfaces. Cells adhered to glass removed all the preadsorbed fibronectin, whereas on silicone they did not. The present study shows that different textures initially give rise to differences in focal contact and fibronectin fibril assembly. The effects of the small, initial in vitro differences on in vivo tissue biocompatibility remains to be studied
    corecore