142 research outputs found
The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia
Purpose of this study was to assess the additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress Cardiac-MR (CMR). Dobutamine Stress CMR was performed in 115 patients with an inconclusive diagnosis of myocardial ischemia on a 1.5 T system (Magnetom Avanto, Siemens Medical Systems). Three short-axis cine and grid series were acquired during rest and at increasing doses of dobutamine (maximum 40 μg/kg/min). On peak dose dobutamine followed immediately by a first pass myocardial perfusion imaging sequence. Images were graded according to the sixteen-segment model, on a four point scale. Ninety-seven patients showed no New (Induced) Wall Motion Abnormalities (NWMA). Perfusion imaging showed absence of perfusion deficits in 67 of these patients (69%). Perfusion deficits attributable to known previous myocardial infarction were found in 30 patients (31%). Eighteen patients had NWMA, indicative for myocardial ischemia, of which 14 (78%) could be confirmed by a corresponding perfusion deficit. Four patients (22%) with NWMA did not have perfusion deficits. In these four patients NWMA were caused by a Left Bundle Branch Block (LBBB). They were free from cardiac events during the follow-up period (median 13.5 months; range 6–20). Addition of first-pass myocardial perfusion imaging during peak-dose dobutamine stress CMR can help to decide whether a NWMA is caused by myocardial ischemia or is due to an (inducible) LBBB, hereby preventing a false positive wall motion interpretation
Radionuclide Imaging of Viable Myocardium: Is it Underutilized?
Coronary artery disease is the major cause of heart failure in North America. Viability assessment is important as it aims to identify patients who stand to benefit from coronary revascularization. Radionuclide modalities currently used in the assessment of viability include 201Tl SPECT, 99mTc-based SPECT imaging, and 18F-fluorodexoyglucose (18F-FDG)-PET imaging. Different advances have been made in the last year to improve the sensitivity and specificity of these modalities. In addition, the optimum amount of viable (yet dysfunctional) myocardium is important to identify in patients, as a risk–benefit ratio must be considered. Patients with predominantly viable/hibernating myocardium can benefit from revascularization from a mortality and morbidity standpoint. However, in patients with minimal viability (predominantly scarred myocardium), revascularization risk may certainly be too high to justify revascularization without expected benefit. Understanding different radionuclide modalities and new developments in the assessment of viability in ischemic heart failure patients is the focus of this discussion
Clinical applications of cardiac CT angiography
ECG-gated multislice CT provides a cost-effective, non-invasive technology for evaluation of the coronary arteries, as well as for additional clinical applications, which require morphological assessment of the heart and adjacent structures with simultaneous evaluation of the coronary circulation
Head to head comparisons of two modalities of perfusion adenosine stress echocardiography with simultaneous SPECT
<p>Abstract</p> <p>Background</p> <p>Real-time perfusion (RTP) contrast echocardiography can be used during adenosine stress echocardiography (ASE) to evaluate myocardial ischemia. We compared two different types of RTP power modulation techniques, angiomode (AM) and high-resolution grayscale (HR), with <sup>99m</sup>Tc-tetrofosmin single-photon emission computed tomography (SPECT) for the detection of myocardial ischemia.</p> <p>Methods</p> <p>Patients with known or suspected coronary artery disease (CAD), admitted to SPECT, were prospectively invited to participate. Patients underwent RTP imaging (SONOS 5500) using AM and HR during Sonovue<sup>® </sup>infusion, before and throughout the adenosine stress, also used for SPECT. Analysis of myocardial perfusion and wall motion by RTP-ASE were done for AM and HR at different time points, blinded to one another and to SPECT. Each segment was attributed to one of the three main coronary vessel areas of interest.</p> <p>Results</p> <p>In 50 patients, 150 coronary areas were analyzed by SPECT and RTP-ASE AM and HR. SPECT showed evidence of ischemia in 13 out of 50 patients. There was no significant difference between AM and HR in detecting ischemia (p = 0.08). The agreement for AM and HR, compared to SPECT, was 93% and 96%, with Kappa values of 0.67 and 0.75, respectively (p < 0.001).</p> <p>Conclusion</p> <p>There was no significant difference between AM and HR in correctly detecting myocardial ischemia as judged by SPECT. This suggests that different types of RTP modalities give comparable data during RTP-ASE in patients with known or suspected CAD.</p
First-pass perfusion CMR two days after infarction predicts severity of functional impairment six weeks later in the rat heart
<p>Abstract</p> <p>Background</p> <p>In humans, dynamic contrast CMR of the first pass of a bolus infusion of Gadolinium-based contrast agent has become a standard technique to identify under-perfused regions of the heart and can accurately demonstrate the severity of myocardial infarction. Despite the clinical importance of this method, it has rarely been applied in small animal models of cardiac disease. In order to identify perfusion delays in the infarcted rat heart, here we present a method in which a T<sub>1 </sub>weighted MR image has been acquired during each cardiac cycle.</p> <p>Methods and results</p> <p>In isolated perfused rat hearts, contrast agent infusion gave uniform signal enhancement throughout the myocardium. Occlusion of the left anterior descending coronary artery significantly reduced the rate of signal enhancement in anterior regions of the heart, demonstrating that the first-pass method was sensitive to perfusion deficits. <it>In vivo </it>measurements of myocardial morphology, function, perfusion and viability were made at 2 and 8 days after infarction. Morphology and function were further assessed using cine-MRI at 42 days. The perfusion delay was larger in rat hearts that went on to develop greater functional impairment, demonstrating that first-pass CMR can be used as an early indicator of infarct severity. First-pass CMR at 2 and 8 days following infarction better predicted outcome than cardiac ejection fraction, end diastolic volume or end systolic volume.</p> <p>Conclusion</p> <p>First-pass CMR provides a predictive measure of the severity of myocardial impairment caused by infarction in a rodent model of heart failure.</p
Quantitative detection of myocardial ischaemia by stress echocardiography; a comparison with SPECT
<p>Abstract</p> <p>Aims</p> <p>Real-time perfusion (RTP) adenosine stress echocardiography (ASE) can be used to visually evaluate myocardial ischaemia. The RTP power modulation technique angio-mode (AM), provides images for off-line perfusion quantification using Qontrast<sup>® </sup>software, generating values of peak signal intensity (A), myocardial blood flow velocity (β) and myocardial blood flow (Axβ). By comparing rest and stress values, their respective reserve values (A-r, β-r, Axβ-r) are generated. We evaluated myocardial ischaemia by RTP-ASE Qontrast<sup>® </sup>quantification, compared to visual perfusion evaluation with <sup>99m</sup>Tc-tetrofosmin single-photon emission computed tomography (SPECT).</p> <p>Methods and Results</p> <p>Patients admitted to SPECT underwent RTP-ASE (SONOS 5500) using AM during Sonovue<sup>® </sup>infusion, before and throughout adenosine stress, also used for SPECT. Visual myocardial perfusion and wall motion analysis, and Qontrast<sup>® </sup>quantification, were blindly compared to one another and to SPECT, at different time points off-line.</p> <p>We analyzed 201 coronary territories (left anterior descendent [LAD], left circumflex [LCx] and right coronary [RCA] artery territories) in 67 patients. SPECT showed ischaemia in 18 patients and 19 territories. Receiver operator characteristics and kappa values showed significant agreement with SPECT only for β-r and Axβ-r in all segments: area under the curve 0.678 and 0.665; P < 0.001 and < 0.01, respectively. The closest agreements were seen in the LAD territory: kappa 0.442 for both β-r and Axβ-r; P < 0.01. Visual evaluation of ischaemia showed good agreement with SPECT: accuracy 93%; kappa 0.67; P < 0.001; without non-interpretable territories.</p> <p>Conclusion</p> <p>In this agreement study with SPECT, RTP-ASE Qontrast<sup>® </sup>quantification of myocardial ischaemia was less accurate and less feasible than visual evaluation and needs further development to be clinically useful.</p
P-glycoprotein and breast cancer resistance protein in acute myeloid leukaemia cells treated with the Aurora-B Kinase Inhibitor barasertib-hQPA
<p>Abstract</p> <p>Background</p> <p>Aurora kinases play an essential role in orchestrating chromosome alignment, segregation and cytokinesis during mitotic progression, with both aurora-A and B frequently over-expressed in a variety of human malignancies. Over-expression of the ABC drug transporter proteins P-glycoprotein (Pgp) and Breast cancer resistance protein (BCRP) is a major obstacle for chemotherapy in many tumour types with Pgp conferring particularly poor prognosis in acute myeloid leukaemia (AML). Barasertib-hQPA is a highly selective inhibitor of aurora-B kinase that has shown tumouricidal activity against a range tumour cell lines including those of leukaemic AML origin.</p> <p>Methods</p> <p>Effect of barasertib-hQPA on the pHH3 biomarker and cell viability was measured in a panel of leukaemic cell lines and 37 primary AML samples by flow cytometry. Pgp status was determined by flow cytometry and BCRP status by flow cytometry and real-time PCR.</p> <p>Results</p> <p>In this study we report the creation of the cell line OCI-AML3DNR, which over-expresses Pgp but not BCRP or multidrug resistance-associated protein (MRP), through prolonged treatment of OCI-AML3 cells with daunorubicin. We demonstrate that Pgp (OCI-AML3DNR and KG-1a) and BCRP (OCI-AML6.2) expressing AML cell lines are less sensitive to barasertib-hQPA induced pHH3 inhibition and subsequent loss of viability compared to transporter negative cell lines. We also show that barasertib-hQPA resistance in these cell lines can be reversed using known Pgp and BCRP inhibitors. We report that barasertib-hQPA is not an inhibitor of Pgp or BCRP, but by using <sup>14</sup>[C]-barasertib-hQPA that it is effluxed by these transporters. Using phosphoHistone H3 (pHH3) as a biomarker of barasertib-hQPA responsiveness in primary AML blasts we determined that Pgp and BCRP positive primary samples were less sensitive to barasertib-hQPA induced pHH3 inhibition (p = <0.001) than samples without these transporters. However, we demonstrate that IC<sub>50 </sub>inhibition of pHH3 by barasertib-hQPA was achieved in 94.6% of these samples after 1 hour drug treatment, in contrast to the resistance of the cell lines.</p> <p>Conclusion</p> <p>We conclude that Pgp and BCRP status and pHH3 down-regulation in patients treated with barasertib should be monitored in order to establish whether transporter-mediated efflux is sufficient to adversely impact on the efficacy of the agent.</p
Cardiac autonomic neuropathy in patients with diabetes and no symptoms of coronary artery disease: comparison of 123I-metaiodobenzylguanidine myocardial scintigraphy and heart rate variability
PURPOSE The purpose of this study was to evaluate the prevalence of cardiac autonomic neuropathy (CAN) in a cohort of patients with type 2 diabetes, truly asymptomatic for coronary artery disease (CAD), using heart rate variability (HRV) and (123)I-metaiodobenzylguanidine ((123)I-mIBG) myocardial scintigraphy. METHODS The study group comprised 88 patients with type 2 diabetes prospectively recruited from an outpatient diabetes clinic. In all patients myocardial perfusion scintigraphy, CAN by HRV and (123)I-mIBG myocardial scintigraphy were performed. Two or more abnormal tests were defined as CAN-positive (ECG-based CAN) and one or fewer as CAN-negative. CAN assessed by (123)I-mIBG scintigraphy was defined as abnormal if the heart-to-mediastinum ratio was 25%, or the total defect score was >13. RESULTS The prevalence of CAN in patients asymptomatic for CAD with type 2 diabetes and normal myocardial perfusion assessed by HRV and (123)I-mIBG scintigraphy was respectively, 27% and 58%. Furthermore, in almost half of patients with normal HRV, (123)I-mIBG scintigraphy showed CAN. CONCLUSION The current study revealed a high prevalence of CAN in patients with type 2 diabetes. Secondly, disagreement between HRV and (123)I-mIBG scintigraphy for the assessment of CAN was observed.Cardiovascular Aspects of Radiolog
- …