11 research outputs found

    Are p.I148T, p.R74W and p.D1270N cystic fibrosis causing mutations ?

    Get PDF
    BACKGROUND: To contribute further to the classification of three CFTR amino acid changes (p.I148T, p.R74W and p.D1270N) either as CF or CBAVD-causing mutations or as neutral variations. METHODS: The CFTR genes from individuals who carried at least one of these changes were extensively scanned by a well established DGGE assay followed by direct sequencing and familial segregation analysis of mutations and polymorphisms. RESULTS: Four CF patients (out of 1238) originally identified as carrying the p.I148T mutation in trans with a CF mutation had a second mutation (c.3199del6 or a novel mutation c.3395insA) on the p.I148T allele. We demonstrate here that the deletion c.3199del6 can also be associated with CF without p.I148T. Three CBAVD patients originally identified with the complex allele p.R74W-p.D1270N were also carrying p.V201M on this allele, by contrast with non CF or asymptomatic individuals including the mother of a CF child, who were carrying p.R74W-p.D1270N alone. CONCLUSION: These findings question p.I148T or p.R74W-p.D1270N as causing by themselves CF or CBAVD and emphazises the necessity to perform a complete scanning of CFTR genes and to assign the parental alleles when novel missense mutations are identified

    Genetic diagnosis of X-linked dominant hypophosphatemic rickets in a cohort study: Tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic Hypophosphatemic Rickets (HR) is a group of diseases characterized by renal phosphate wasting with inappropriately low or normal 1,25-dihydroxyvitamin D<sub>3 </sub>(1,25(OH)<sub>2</sub>D) serum levels. The most common form of HR is X-linked dominant HR (XLHR) which is caused by inactivating mutations in the <it>PHEX </it>gene. The purpose of this study was to perform genetic diagnosis in a cohort of patients with clinical diagnosis of HR, to perform genotype-phenotype correlations of those patients and to compare our data with other HR cohort studies.</p> <p>Methods</p> <p>Forty three affected individuals from 36 non related families were analyzed. For the genetic analysis, the <it>PHEX </it>gene was sequenced in all of the patients and in 13 cases the study was complemented by mRNA sequencing and Multiple Ligation Probe Assay. For the genotype-phenotype correlation study, the clinical and biochemical phenotype of the patients was compared with the type of mutation, which was grouped into clearly deleterious or likely causative, using the Mann-Whitney and Fisher's exact test.</p> <p>Results</p> <p>Mutations in the <it>PHEX </it>gene were identified in all the patients thus confirming an XLHR. Thirty four different mutations were found distributed throughout the gene with higher density at the 3' end. The majority of the mutations were novel (69.4%), most of them resulted in a truncated PHEX protein (83.3%) and were family specific (88.9%). Tubular reabsorption of phosphate (TRP) and 1,25(OH)<sub>2</sub>D serum levels were significantly lower in patients carrying clearly deleterious mutations than in patients carrying likely causative ones (61.39 ± 19.76 vs. 80.14 ± 8.80%, p = 0.028 and 40.93 ± 30.73 vs. 78.46 ± 36.27 pg/ml, p = 0.013).</p> <p>Conclusions</p> <p><it>PHEX </it>gene mutations were found in all the HR cases analyzed, which was in contrast with other cohort studies. Patients with clearly deleterious <it>PHEX </it>mutations had lower TRP and 1,25(OH)<sub>2</sub>D levels suggesting that the <it>PHEX </it>type of mutation might predict the XLHR phenotype severity.</p

    Osteocytes: mechanosensors of bone and orchestrators of mechanical adaptation

    No full text
    Significant progress has been made in the field of mechanotransduction in bone cells. The knowledge about the role of osteocytes as the professional mechanosensor cells of bone as well as the lacuno-canalicular porosity as the structure that mediates mechanosensing is increasing. New insights might result in a paradigm for understanding the bone formation response to mechanical loading, and the bone resorption response to disuse. Under physiological loading conditions the strain-derived flow of interstitial fluid through the lacuno-canalicular porosity seems to mechanically activate the osteocytes, which subsequently alter the bone remodeling activity of osteoblasts and/or osteoclasts. Fatigue loading results in local microdamage, disruption of normal flow patterns, and osteocyte apoptosis. Apoptotic osteocytes likely attract osteoclasts to resorb the damaged bone. This concept allows explanation of local bone gain and loss, as well as remodeling in response to fatigue damage, as processes supervised by mechanosensitive osteocytes. Uncovering the cellular and mechanical basis of the osteocyte’s response to loading would greatly contribute to our understanding of the cellular basis for bone remodeling, and could contribute to the discovery of new treatment modalities for bone mass disorders, such as osteoporosis

    Monogen vererbte Hypophosphatämien

    No full text
    corecore