29 research outputs found

    Summer and winter differences in zooplankton biomass, distribution and size composition in the KwaZulu-Natal Bight, South Africa

    Get PDF
    Zooplankton biomass and distribution in the KwaZulu-Natal Bight were investigated in relation to environmental parameters during summer (January–February 2010) and winter (July–August 2010). Mean zooplankton biomass was significantly higher in winter (17.1 mg dry weight [DW] m–3) than in summer (9.5 mg DW m−3). In summer, total biomass was evenly distributed within the central bight, low off the Thukela River mouth and peaked near Durban. In winter, highest biomass was found offshore between Richards Bay and Cape St Lucia. Zooplankton biomass in each size class was significantly, negatively related to sea surface temperature and integrated nitrate, but positively related to surface chlorophyll a and dissolved oxygen. Zooplankton biomass was significantly related to bottom depth, with greatest total biomass located inshore (<50 m). Distribution across the shelf varied with zooplankton size. Seasonal differences in copepod size composition suggest that a smaller, younger community occupied the cool, chlorophyll-rich waters offshore from the St Lucia upwelling cell in winter, and a larger, older community occurred within the relatively warm and chlorophyll-poor central bight in summer. Nutrient enrichment from quasi-permanent upwelling off Durban and Richards Bay appears to have a greater influence on zooplankton biomass and distribution in the bight than the strongly seasonal nutrient input from the Thukela River.DHE

    Seasonal Patterns of Body Temperature Daily Rhythms in Group-Living Cape Ground Squirrels Xerus inauris

    Get PDF
    Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (Ta). We measured core body temperature (Tb) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily Ta provided the greatest explanatory power for mean Tb whereas sunrise had greatest power for Tb acrophase. There were significant changes in mean Tb and Tb acrophase over time with mean Tb increasing and Tb acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in Tb, sometimes in excess of 5°C, were noted during the first hour post emergence, after which Tb remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to ‘offload’ heat. In addition, greater Tb amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their Ta-Tb gradient. Finally, there were significant effects of age and group size on Tb with a lower and less variable Tb in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile Tb which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment

    Asymmetric division coordinates collective cell migration in angiogenesis

    Get PDF
    The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete ‘tip’ or ‘stalk’ thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion

    Bifurcations and instabilities in rotating two-layer fluids: I. f-plane

    Full text link
    In this paper, we show that the behaviour of weakly nonlinear waves in a 2-layer model of baroclinic instability on an f-plane with varying viscosity is determined by a single, degenerate codimension three bifurcation. In the process, we show how previous studies, using the method of multiple scales to derive evolution equations for the slowly varying amplitude of the growing wave, arise as special limits of the general evolution description. A companion study will extend the results to a β-plane

    Generation of inertia-gravity waves in a baroclinically unstable fluid

    Full text link
    A novel technique is used to visualize and measure the baroclinically unstable flow in a two-layer, rotating annulus experiment with very high resolution in space and time. It is found that small-scale, high-frequency waves are generated in certain preferred locations within the flow by a baroclinic wave undergoing amplitude vacillation. These fast waves are investigated in terms of their dispersion relation, and are shown to be consistent with inertia-gravity waves, generated in association with a source moving with the large-scale baroclinic wave. The occurrence of these waves is described and discussed in the context of spontaneous adjustment radiation and the meteorological slow manifold. Phase-portrait analyses of the present experiments indicate that, despite the apparent generation of inertia-gravity waves as spontaneous adjustment radiation, the resulting vacillatory behaviour remains consistent with low-dimensional dynamics

    Bifurcations and instabilities in rotating, two-layer fluids: II. beta-plane

    Full text link
    In this paper, we show that the behavior of weakly nonlinear waves in a 2-layer model of baroclinic instability on a P-plane with varying viscosity is determined by a single degenerate codimension three bifurcation. In the process, we show how previous studies, using the method of multiple scales to derive evolution equations for the slowly varying amplitude of the growing wave, arise as special limits of the general evolution description

    Generation of inertia-gravity waves by a time-dependent baroclinic wave in the laboratory

    Full text link
    A novel technique is used to visualise and measure a baroclinically unstable flow in a two-layer, rotating annulus experiment in the laboratory with very high resolution in space and time. It was found that small-scale, high-frequency waves were generated in certain preferred locations within the flow by a baroclinic wave undergoing periodic amplitude vacillation. These fast waves have been investigated in terms of their dispersion relation and shown to be consistent with inertia-gravity waves, generated in association with geostrophic adjustment. Phase-portrait analyses of these experiments indicate that the resulting vacillatory behaviour of the large-scale flow remains consistent with low-dimensional dynamics, despite the generation of these small-scale inertia gravity waves
    corecore