81 research outputs found
Referrals to a facial pain service
AIM: To assess the quality of referral letters to a facial pain service and highlight the key requirements of such letters.
METHOD: The source of all referral letters to the service for five years was established. For one year the information provided in 94 referrals was assessed. Using a predetermined checklist of essential information the referral letters were compared to these set criteria.
RESULTS: The service received 7,001 referrals and, on average, general dental practitioners (GDPs) referred 303 more patients per year than general medical practitioners (GMPs). Seventy-one percent of all referrals were from primary care practitioners, the rest were from specialists. Over 70% of GMP and 52% of GDP letters included a past medical history, with GMPs more likely to suggest a possible diagnosis and include previous secondary care referrals. The mean score for GMP referrals compared to the standard proforma (maximum of 12) was 5.6 and for GDP referrals 5.0. A relevant drug history was included by 75.6% GMP compared to 38.7% of GDPs. GMPs were more likely to include any relevant mental health history.
CONCLUSIONS: The overall quality of referral letters is low which makes it difficult for the specialists to provide robust treatment plans
A Multi-Stage Model for Fundamental Functional Properties in Primary Visual Cortex
Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (∼4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex
Sensible heat has significantly affected the global hydrological cycle over the historical period
Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability
Complement Inhibition Promotes Endogenous Neurogenesis and Sustained Anti-Inflammatory Neuroprotection following Reperfused Stroke
The restoration of blood-flow following cerebral ischemia incites a series of deleterious cascades that exacerbate neuronal injury. Pharmacologic inhibition of the C3a-receptor ameliorates cerebral injury by attenuating post-ischemic inflammation. Recent reports also implicate C3a in the modulation of tissue repair, suggesting that complement may influence both injury and recovery at later post-ischemic time-points.To evaluate the effect of C3a-receptor antagonism on post-ischemic neurogenesis and neurological outcome in the subacute period of stroke, transient focal cerebral ischemia was induced in adult male C57BL/6 mice treated with multiple regimens of a C3a receptor antagonist (C3aRA).Low-dose C3aRA administration during the acute phase of stroke promotes neuroblast proliferation in the subventricular zone at 7 days. Additionally, the C3a receptor is expressed on T-lymphocytes within the ischemic territory at 7 days, and this cellular infiltrate is abrogated by C3aRA administration. Finally, C3aRA treatment confers robust histologic and functional neuroprotection at this delayed time-point.Targeted complement inhibition through low-dose antagonism of the C3a receptor promotes post-ischemic neuroblast proliferation in the SVZ. Furthermore, C3aRA administration suppresses T-lymphocyte infiltration and improves delayed functional and histologic outcome following reperfused stroke. Post-ischemic complement activation may be pharmacologically manipulated to yield an effective therapy for stroke
Vertical Binocular Disparity is Encoded Implicitly within a Model Neuronal Population Tuned to Horizontal Disparity and Orientation
Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations
The effect of type of femoral component fixation on mortality and morbidity after hip hemiarthroplasty:A systematic review and meta-analysis
Background: Hip hemiarthroplasty is a well-established treatment of displaced femoral neck fracture, although debate exists over whether cemented or uncemented fixation is superior. Uncemented prostheses have typically been used in younger, healthier patients and cemented prostheses in older patients with less-stable bone. Also, earlier research has suggested that bone cement has cytotoxic effects and may trigger cardiovascular and respiratory adverse events. Questions/Purposes: The aim of this systematic review and meta-analysis was to compare morbidity and mortality rates after cemented and uncemented hemiarthroplasty for the treatment of displaced femoral neck fractures in elderly patients. Methods: Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched seven medical databases for randomized clinical trials and observational studies. We compared cemented and uncemented hemiarthroplasty using the Harris Hip Score (HHS), as well as measures of postoperative pain, mortality, and complications. Data were extracted and pooled as risk ratios or standardized mean difference with their corresponding 95% confidence intervals in a meta-analysis model. Results: The meta-analysis included 34 studies (12 randomized trials and 22 observational studies), with a total of 42,411 patients. In the pooled estimate, cemented hemiarthroplasty was associated with less risk of postoperative pain than uncemented hemiarthroplasty. There were no significant differences between groups regarding HHS or rates of postoperative mortality, pulmonary embolism, cardiac arrest, myocardial infarction, acute cardiac arrhythmia, or deep venous thrombosis. Conclusions: While we found that cemented hemiarthroplasty results in less postoperative pain than uncemented hemiarthroplasty in older patients with femoral neck fracture, the lack of significant differences in functional hip scores, mortality, and complications was surprising. Further high-level research is needed
- …