51 research outputs found

    Predicting Multiple ICD-10 Codes from Brazilian-Portuguese Clinical Notes

    Full text link
    ICD coding from electronic clinical records is a manual, time-consuming and expensive process. Code assignment is, however, an important task for billing purposes and database organization. While many works have studied the problem of automated ICD coding from free text using machine learning techniques, most use records in the English language, especially from the MIMIC-III public dataset. This work presents results for a dataset with Brazilian Portuguese clinical notes. We develop and optimize a Logistic Regression model, a Convolutional Neural Network (CNN), a Gated Recurrent Unit Neural Network and a CNN with Attention (CNN-Att) for prediction of diagnosis ICD codes. We also report our results for the MIMIC-III dataset, which outperform previous work among models of the same families, as well as the state of the art. Compared to MIMIC-III, the Brazilian Portuguese dataset contains far fewer words per document, when only discharge summaries are used. We experiment concatenating additional documents available in this dataset, achieving a great boost in performance. The CNN-Att model achieves the best results on both datasets, with micro-averaged F1 score of 0.537 on MIMIC-III and 0.485 on our dataset with additional documents.Comment: Accepted at BRACIS 202

    Bridging the Health Data Divide

    No full text
    Fundamental quality, safety, and cost problems have not been resolved by the increasing digitization of health care. This digitization has progressed alongside the presence of a persistent divide between clinicians, the domain experts, and the technical experts, such as data scientists. The disconnect between clinicians and data scientists translates into a waste of research and health care resources, slow uptake of innovations, and poorer outcomes than are desirable and achievable. The divide can be narrowed by creating a culture of collaboration between these two disciplines, exemplified by events such as datathons. However, in order to more fully and meaningfully bridge the divide, the infrastructure of medical education, publication, and funding processes must evolve to support and enhance a learning health care system

    Bayesian fusion of physiological measurements using a signal quality extension

    No full text
    Objective: The fusion of multiple noisy labels for biomedical data (such as ECG annotations, which may be obtained from human experts or from automated systems) into a single robust annotation has many applications in physiologic monitoring. Directly modelling the difficulty of the task has the potential to improve the fusion of such labels. This paper proposes a means for the incorporation of task difficulty, as quantified by ‘signal quality’, into the fusion process. Approach: We propose a Bayesian fusion model to infer a consensus through aggregating labels, where the labels are provided by multiple imperfect automated algorithms (or ‘annotators’). Our model incorporates the signal quality of the underlying recording when fusing labels. We compare our proposed model with previously published approaches. Two publicly available datasets were used to demonstrate the feasibility of our proposed model: one focused on QT interval estimation in the ECG and the other focused on respiratory rate (RR) estimation from the photoplethysmogram (PPG). We inferred the hyperparameters of our model using maximum- a posteriori inference and Gibbs sampling. Main results: For the QT dataset, our model significantly outperformed the previously published models (root-mean-square error of 25.61 ± 8.68 ms for our model versus 30.79 ± 13.16 ms from the best existing model) when fusing labels from only three annotators. For the RR dataset, no improvement was observed compared to the same model without signal quality modelling, where our model outperformed existing models (mean-absolute error of 1.89 ± 0.36 bpm for our model versus 2.22 ± 0.41 bpm from the best existing model). We conclude that our approach demonstrates the feasibility of using a signal quality metric as a confidence measure to improve label fusion. Significance: Our Bayesian learning model provides an extension over existing work to incorporate signal quality as a confidence measure to improve the reliability of fusing labels from biomedical datasets

    Bayesian fusion of physiological measurements using a signal quality extension

    No full text
    Objective: The fusion of multiple noisy labels for biomedical data (such as ECG annotations, which may be obtained from human experts or from automated systems) into a single robust annotation has many applications in physiologic monitoring. Directly modelling the difficulty of the task has the potential to improve the fusion of such labels. This paper proposes a means for the incorporation of task difficulty, as quantified by ‘signal quality’, into the fusion process. Approach: We propose a Bayesian fusion model to infer a consensus through aggregating labels, where the labels are provided by multiple imperfect automated algorithms (or ‘annotators’). Our model incorporates the signal quality of the underlying recording when fusing labels. We compare our proposed model with previously published approaches. Two publicly available datasets were used to demonstrate the feasibility of our proposed model: one focused on QT interval estimation in the ECG and the other focused on respiratory rate (RR) estimation from the photoplethysmogram (PPG). We inferred the hyperparameters of our model using maximum- a posteriori inference and Gibbs sampling. Main results: For the QT dataset, our model significantly outperformed the previously published models (root-mean-square error of 25.61 ± 8.68 ms for our model versus 30.79 ± 13.16 ms from the best existing model) when fusing labels from only three annotators. For the RR dataset, no improvement was observed compared to the same model without signal quality modelling, where our model outperformed existing models (mean-absolute error of 1.89 ± 0.36 bpm for our model versus 2.22 ± 0.41 bpm from the best existing model). We conclude that our approach demonstrates the feasibility of using a signal quality metric as a confidence measure to improve label fusion. Significance: Our Bayesian learning model provides an extension over existing work to incorporate signal quality as a confidence measure to improve the reliability of fusing labels from biomedical datasets

    Patient Specific Predictions in the Intensive Care Unit Using a Bayesian Ensemble

    No full text
    An intensive care unit mortality prediction model for the PhysioNet/Computing in Cardiology Challenge 2012 using a novel Bayesian ensemble learning algorithm is described. Methods: Data pre-processing was automatically performed based upon domain knowledge to remove artefacts and erroneous recordings, e.g. physiologically invalid entries and unit conversion errors. A range of diverse features was extracted from the original time series signals including standard statistical descriptors such as the minimum, maximum, median, first, last, and the number of values. A new Bayesian ensemble scheme comprising 500 weak learners was then developed to classify the data samples. Each weak learner was a decision tree of depth two, which randomly assigned an intercept and gradient to a randomly selected single feature. The parameters of the ensemble learner were determined using a custom Markov chain Monte Carlo sampler. Results: The model was trained using 4000 observations from the training set, and was evaluated by the organisers of the competition on two new datasets with 4000 observations each (set b and set c). The outcomes of the datasets were unavailable to the competitors. The competition was judged on two events by two scores. Score 1 was the minimum of the positive predictive value and sensitivity for binary model predictions, and the model achieved 0.5310 and 0.5353 on the unseen datasets. Score 2, a range-normalized Hosmer-Lemeshow C statistic, evaluated to 26.44 and 29.86. The model was re-developed using the updated data sets from phase 2 after the competition, and achieved a score 1 of 0.5374 and a score 2 of 18.20 on set c. Conclusion: The proposed prediction model performs favourably on both the provided and hidden data sets (set A and set B), and has the potential to be used effectively for patient-specific predictions. © 2012 CCAL

    Machine learning and decision support in critical care

    No full text
    Clinical data management systems typically provide caregiver teams with useful information, derived from large, sometimes highly heterogeneous, data sources that are often changing dynamically. Over the last decade there has been a significant surge in interest in using these data sources, from simply reusing the standard clinical databases for event prediction or decision support, to including dynamic and patient-specific information into clinical monitoring and prediction problems. However, in most cases, commercial clinical databases have been designed to document clinical activity for reporting, liability, and billing reasons, rather than for developing new algorithms. With increasing excitement surrounding “secondary use of medical records” and “Big Data” analytics, it is important to understand the limitations of current databases and what needs to change in order to enter an era of “precision medicine.” This review article covers many of the issues involved in the collection and pre-processing of critical care data. The three challenges in critical care are considered: compartmentalization, corruption, and complexity. A range of applications addressing these issues are covered, including the modernization of static acuity scoring; online patient tracking; personalized prediction and risk assessment; artifact detection; state estimation; and incorporation of multimodal data sources such as genomic and free text data

    Caution should be taken when using electronic health record database

    No full text

    Towards a robust estimation of respiratory rate from pulse oximeters

    No full text
    Goal Current methods for estimating respiratory rate (RR) from the photoplethysmogram (PPG) typically fail to distinguish between periods of high- and low-quality input data, and fail to perform well on independent “validation” datasets. The lack of robustness of existing methods directly results in a lack of penetration of such systems into clinical practice. The present work proposes an alternative method to improve the robustness of the estimation of RR from the PPG. Methods The proposed algorithm is based on the use of multiple autoregressive models of different orders for determining the dominant respiratory frequency in the three respiratory-induced variations (frequency, amplitude and intensity) derived from the PPG. The algorithm was tested on two different datasets comprising 95 8-minute PPG recordings (in total) acquired from both children and adults in different clinical settings, and its performance using two window sizes (32 and 64 seconds) was compared with that of existing methods in the literature. Results The proposed method achieved comparable accuracy to existing methods in the literature, with mean absolute errors (median, 25th-75th percentiles for a window size of 32 seconds) of 1.5 (0.3-3.3) and 4.0 (1.8-5.5) breaths per minute (for each dataset respectively), whilst providing RR estimates for a greater proportion of windows (over 90% of the input data are kept). Conclusion Increased robustness of RR estimation by the proposed method was demonstrated. Significance This work demonstrates that the use of large publicly-available datasets is essential for improving the robustness of wearable-monitoring algorithms for use in clinical practice.</p

    Impact of sex on use of low tidal volume ventilation in invasively ventilated ICU patients—A mediation analysis using two observational cohorts

    No full text
    Background Studies in patients receiving invasive ventilation show important differences in use of low tidal volume (VT) ventilation (LTVV) between females and males. The aims of this study were to describe temporal changes in VT and to determine what factors drive the sex difference in use of LTVV. Methods and findings This is a posthoc analysis of 2 large longitudinal projects in 59 ICUs in the United States, the ‘Medical information Mart for Intensive Care III’ (MIMIC III) and the ‘eICU Collaborative Research DataBase’. The proportion of patients under LTVV (median VT < 8 ml/kg PBW), was the primary outcome. Mediation analysis, a method to dissect total effect into direct and indirect effects, was used to understand which factors drive the sex difference. We included 3614 (44%) females and 4593 (56%) males. Median VT declined over the years, but with a persistent difference between females (from median 10.2 (9.1 to 11.4) to 8.2 (7.5 to 9.1) ml/kg PBW) vs. males (from median 9.2 [IQR 8.2 to 10.1] to 7.3 [IQR 6.6 to 8.0] ml/kg PBW) (P < .001). In females versus males, use of LTVV increased from 5 to 50% versus from 12 to 78% (difference, –27% [–29% to –25%]; P < .001). The sex difference was mainly driven by patients’ body height and actual body weight (adjusted average causal mediation effect, –30% [–33% to –27%]; P < .001, and 4 [3% to 4%]; P < .001). Conclusions While LTVV is increasingly used in females and males, females continue to receive LTVV less often than males. The sex difference is mainly driven by patients’ body height and actual body weight, and not necessarily by sex. Use of LTVV in females could improve by paying more attention to a correct calculation of VT, i.e., using the correct body height
    corecore