11 research outputs found
Holographic Phase Transition to Topological Dyons
The dynamical stability of a Julia-Zee solution in the AdS background in a
four dimensional Einstein-Yang-Mills-Higgs theory is studied. We find that the
model with a vanishing scalar field develops a non-zero value for the field at
a certain critical temperature which corresponds to a topological dyon in the
bulk and a topological phase transition at the boundary.Comment: 18 pages, 2 figures, 2 tables, sections 2 and 4 are shortened, an
error in the last part of section 5 is corrected and equations are modified.
This version to be published in JHE
Generalized scaling function from light-cone gauge AdS_5 x S^5 superstring
We revisit the computation of the 2-loop correction to the energy of a folded
spinning string in AdS_5 with an angular momentum J in S^5 in the scaling limit
log S, J >>1 with J / log S fixed. This correction gives the third term in the
strong-coupling expansion of the generalized scaling function. The computation,
using the AdS light-cone gauge approach developed in our previous paper, is
done by expanding the AdS_5 x S^5 superstring partition function near the
generalized null cusp world surface associated to the spinning string solution.
The result corrects and extends the previous conformal gauge result of
arXiv:0712.2479 and is found to be in complete agreement with the corresponding
terms in the generalized scaling function as obtained from the asymptotic Bethe
ansatz in arXiv:0805.4615 (and also partially from the quantum O(6) model and
the Bethe ansatz data in arXiv:0809.4952). This provides a highly nontrivial
strong coupling comparison of the Bethe ansatz proposal with the quantum AdS_5
x S^5 superstring theory, which goes beyond the leading semiclassical term
effectively controlled by the underlying algebraic curve. The 2-loop
computation we perform involves all the structures in the AdS light-cone gauge
superstring action of hep-th/0009171 and thus tests its ultraviolet finiteness
and, through the agreement with the Bethe ansatz, its quantum integrability. We
do most of the computations for a generalized spinning string solution or the
corresponding null cusp surface that involves both the orbital momentum and the
winding in a large circle of S^5.Comment: 50 pages, late