71 research outputs found
Peroxisome Proliferator-Activated Receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes
Background: PPARs exhibit anti-inflammatory capacities and are potential modulators of the inflammatory response. We hypothesized that their expression and/or function may be altered in cystic fibrosis (CF), a disorder characterized by an excessive host inflammatory response.
Methods: PPARα, β and γ mRNA levels were measured in peripheral blood cells of CF patients and healthy subjects via RT-PCR. PPARα protein expression and subcellular localization was determined via western blot and immunofluorescence, respectively. The activity of PPARα was analyzed by gel shift assay.
Results: In lymphocytes, the expression of PPARα mRNA, but not of PPARβ, was reduced (-37%; p < 0.002) in CF patients compared with healthy persons and was therefore further analyzed. A similar reduction of PPARα was observed at protein level (-26%; p < 0.05). The transcription factor was mainly expressed in the cytosol of lymphocytes, with low expression in the nucleus. Moreover, DNA binding activity of the transcription factor was 36% less in lymphocytes of patients (p < 0.01). For PPARα and PPARβ mRNA expression in monocytes and neutrophils, no significant differences were observed between CF patients and healthy persons. In all cells, PPARγ mRNA levels were below the detection limit.
Conclusion: Lymphocytes are important regulators of the inflammatory response by releasing cytokines and antibodies. The diminished lymphocytic expression and activity of PPARα may therefore contribute to the inflammatory processes that are observed in CF
The Retinoic Acid Receptor Agonist Am80 Increases Mucosal Inflammation in an IL-6 Dependent Manner During Trichuris muris Infection
PURPOSE: Vitamin A metabolites, such as all-trans-retinoic acid (RA) that act through the nuclear receptor; retinoic acid receptor (RAR), have been shown to polarise T cells towards Th2, and to be important in resistance to helminth infections. Co-incidentally, people harbouring intestinal parasites are often supplemented with vitamin A, as both vitamin A deficiency and parasite infections often occur in the same regions of the globe. However, the impact of vitamin A supplementation on gut inflammation caused by intestinal parasites is not yet completely understood. METHODS: Here, we use Trichuris muris, a helminth parasite that buries into the large intestine of mice causing mucosal inflammation, as a model of both human Trichuriasis and IBD, treat with an RARα/β agonist (Am80) and quantify the ensuing pathological changes in the gut. RESULTS: Critically, we show, for the first time, that rather than playing an anti-inflammatory role, Am80 actually exacerbates helminth-driven inflammation, demonstrated by an increased colonic crypt length and a significant CD4(+) T cell infiltrate. Further, we established that the Am80-driven crypt hyperplasia and CD4(+) T cell infiltrate were dependent on IL-6, as both were absent in Am80-treated IL-6 knock-out mice. CONCLUSIONS: This study presents novel data showing a pro-inflammatory role of RAR ligands in T. muris infection, and implies an undesirable effect for the administration of vitamin A during chronic helminth infection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10875-013-9936-8) contains supplementary material, which is available to authorized users
A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis.
Background: Ublituximab, a novel monoclonal antibody (mAb) targeting a unique epitope on the CD20 antigen, is glycoengineered for enhanced B-cell targeting through antibody-dependent cellular cytotoxicity (ADCC). Greater ADCC may allow lower doses and shorter infusion times versus other anti-CD20 mAbs.
Objective: The objective was to determine optimal dose, infusion time, and activity of ublituximab in relapsing multiple sclerosis.
Methods: This is a phase 2, placebo-controlled study. Patients received three ublituximab infusions (150 mg over 1-4 hours on day 1 and 450-600 mg over 1-3 hours on day 15 and week 24) in six dosing cohorts. The primary endpoint was B-cell depletion.
Results: In all cohorts (N = 48), median B-cell depletion was >99% by week 4, maintained at weeks 24 and 48. Most common adverse events (AEs) were infusion-related reactions (all grade 1-2), with no apparent increased incidence at shorter infusion times. There were no AE-related discontinuations. At weeks 24 and 48, no T1 gadolinium-enhancing lesions (p = 0.003) and a 10.6% decrease in T2 lesion volume (p = 0.002) were detected. The annualized relapse rate was 0.07; 93% remained relapse free on study. Overall, 74% of patients had no evidence of disease activity (NEDA).
Conclusion: Ublituximab was safely infused as rapid as 1 hour, producing robust B-cell depletion and profound reductions in magnetic resonance imaging (MRI) activity and relapses
Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis
BACKGROUND: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). In recent years, it has been found that cells such as human amnion epithelial cells (hAECs) have the ability to modulate immune responses in vitro and in vivo and can differentiate into multiple cell lineages. Accordingly, we investigated the immunoregulatory effects of hAECs as a potential therapy in an MS-like disease, EAE (experimental autoimmune encephalomyelitis), in mice. METHODS: Using flow cytometry, the phenotypic profile of hAECs from different donors was assessed. The immunomodulatory properties of hAECs were examined in vitro using antigen-specific and one-way mixed lymphocyte proliferation assays. The therapeutic efficacy of hAECs was examined using a relapsing-remitting model of EAE in NOD/Lt mice. T cell responsiveness, cytokine secretion, T regulatory, and T helper cell phenotype were determined in the peripheral lymphoid organs and CNS of these animals. RESULTS: In vitro, hAECs suppressed both specific and non-specific T cell proliferation, decreased pro-inflammatory cytokine production, and inhibited the activation of stimulated T cells. Furthermore, T cells retained their naïve phenotype when co-cultured with hAECs. In vivo studies revealed that hAECs not only suppressed the development of EAE but also prevented disease relapse in these mice. T cell responses and production of the pro-inflammatory cytokine interleukin (IL)-17A were reduced in hAEC-treated mice, and this was coupled with a significant increase in the number of peripheral T regulatory cells and naïve CD4+ T cells. Furthermore, increased proportions of Th2 cells in the peripheral lymphoid organs and within the CNS were observed. CONCLUSION: The therapeutic effect of hAECs is in part mediated by inducing an anti-inflammatory response within the CNS, demonstrating that hAECs hold promise for the treatment of autoimmune diseases like MS
RTL551 Treatment of EAE Reduces CD226 and T-bet+ CD4 T Cells in Periphery and Prevents Infiltration of T-bet+ IL-17, IFN-γ Producing T Cells into CNS
Recombinant T cell receptor ligands (RTLs) that target encephalitogenic T-cells can reverse clinical and histological signs of EAE, and are currently in clinical trials for treatment of multiple sclerosis. To evaluate possible regulatory mechanisms, we tested effects of RTL therapy on expression of pathogenic and effector T-cell maturation markers, CD226, T-bet and CD44, by CD4+ Th1 cells early after treatment of MOG-35-55 peptide-induced EAE in C57BL/6 mice. We showed that 1–5 daily injections of RTL551 (two-domain I-Ab covalently linked to MOG-35-55 peptide), but not the control RTL550 (“empty” two-domain I-Ab without a bound peptide) or Vehicle, reduced clinical signs of EAE, prevented trafficking of cells outside the spleen, significantly reduced the frequency of CD226 and T-bet expressing CD4+ T-cells in blood and inhibited expansion of CD44 expressing CD4+ T-cells in blood and spleen. Concomitantly, RTL551 selectively reduced CNS inflammatory lesions, absolute numbers of CNS infiltrating T-bet expressing CD4+ T-cells and IL-17 and IFN-γ secretion by CNS derived MOG-35-55 reactive cells cultured ex vivo. These novel results demonstrate that a major effect of RTL therapy is to attenuate Th1 specific changes in CD4+ T-cells during EAE and prevent expansion of effector T-cells that mediate clinical signs and CNS inflammation in EAE
Amelioration of Experimental Autoimmune Encephalomyelitis by Plumbagin through Down-Regulation of JAK-STAT and NF-κB Signaling Pathways
Plumbagin(PL), a herbal compound derived from roots of the medicinal plant Plumbago zeylanica, has been shown to have immunosuppressive properties. Present report describes that PL is a potent novel agent in control of encephalitogenic T cell responses and amelioration of mouse experimental autoimmune encephalomyelitis (EAE), through down-regulation of JAK-STAT pathway. PL was found to selectively inhibit IFN-γ and IL-17 production by CD4+ T cells, which was mediated through abrogated phosphorylation of JAK1 and JAK2. Consistent with IFN-γ and IL-17 reduction was suppressed STAT1/STAT4/T-bet pathway which is critical for Th1 differentiation, as well as STAT3/ROR pathway which is essential for Th17 differentiation. In addition, PL suppressed pro-inflammatory molecules such as iNOS, IFN-γ and IL-6, accompanied by inhibition of IκB degradation as well as NF-κB phosphorylation. These data give new insight into the novel immune regulatory mechanism of PL and highlight the great value of this kind of herb compounds in probing the complex cytokine signaling network and novel therapeutic targets for autoimmune diseases
Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis
Unique Gene Expression Patterns in Human T-cell Lines Generated from Multiple Sclerosis Patients by Stimulation with a Synthetic MOG Peptide
The Retinoic Acid Receptor Agonist Am80 Increases Mucosal Inflammation in an IL-6 Dependent Manner During Trichuris muris Infection
Neuroinflammatory signals enhance the immunomodulatory and neuroprotective properties of multipotent adult progenitor cells
Introduction: Stem cell-based therapies are currently widely explored as a tool to treat neuroimmune diseases. MAPC (Multipotent Adult Progenitor Cells) have been suggested to have strong immunomodulatory and neuroprotective properties in several experimental models. In this study, we investigate whether MAPC are of therapeutic interest for neuroinflammatory disorders such as multiple sclerosis (MS), by evaluating their capacities to modulate crucial pathological features and gain insights in the molecular pathways involved.
Methods: Rat MAPC (rMAPC) were treated with combinations of pro-inflammatory cytokines that are closely associated with neuroinflammatory conditions, a process called licensing. mRNA expression of immunomodulatory molecules, chemokines and chemokine receptors was investigated. The migratory potential of licensed rMAPC towards a broad spectrum of chemokines was tested in a Transwell assay. Furthermore, the effect of licensing on the ability of rMAPC to attract and suppress the proliferation of encephalitogenic T cells was assessed. Finally, neuroprotective properties of rMAPC were determined in the context of protection from oxidative stress of oligodendrocytes. Therefore, rMAPC were incubated with conditioned medium of OLN93 cells subjected to sub-lethal doses of hydrogen peroxide (H2O2) and the gene expression of neurotrophic factors was assessed.
Results: After licensing, a wide variety of immunomodulatory molecules and chemokines, including Nitric Oxide synthase (iNOS) and fractalkine, was up-regulated by rMAPC. The migratory properties of rMAPC towards various chemokines were also altered. In addition, rMAPC were found to inhibit antigen specific T cell proliferation and this suppressive effect was further enhanced after pro-inflammatory treatment. This phenomenon was partially mediated through iNOS or cyclooxygenase-2 (COX-2). Activated rMAPC secreted factors that led to attraction of myelin specific T cells. Finally, exposure of rMAPC to in vitro simulated neurodegenerative environment induced the up-regulation of mRNA levels of vascular endothelial growth factor (VEGF) and ciliary neurotrophic factor (CNTF). Factors secreted by rMAPC in response to this environment partially protected OLN93 cells from H2O2 induced cell death.
Conclusions: rMAPC possess immune modulatory and neuroprotective properties which are enhanced in response to neuroinflammatory signals. These findings thereby warrant further research to evaluate MAPC transplantation as a therapeutic approach in diseases with an immunological and neurodegenerative component such as MS.The authors would like to thank Ms. Katrien Wauterickx, Ms. Christel Bocken and Mr. Jo Janssen (Hasselt University, Biomedical Research institute) for overall technical assistance. Additionally, we gratefully thank Ms. Ellen Van Houtven (ReGenesys) for her assistance in designing the migration assays. This research was supported by the Belgian Charcot Foundation
- …
