303 research outputs found
Self-adaptation of Mutation Rates in Non-elitist Populations
The runtime of evolutionary algorithms (EAs) depends critically on their
parameter settings, which are often problem-specific. Automated schemes for
parameter tuning have been developed to alleviate the high costs of manual
parameter tuning. Experimental results indicate that self-adaptation, where
parameter settings are encoded in the genomes of individuals, can be effective
in continuous optimisation. However, results in discrete optimisation have been
less conclusive. Furthermore, a rigorous runtime analysis that explains how
self-adaptation can lead to asymptotic speedups has been missing. This paper
provides the first such analysis for discrete, population-based EAs. We apply
level-based analysis to show how a self-adaptive EA is capable of fine-tuning
its mutation rate, leading to exponential speedups over EAs using fixed
mutation rates.Comment: To appear in the Proceedings of the 14th International Conference on
Parallel Problem Solving from Nature (PPSN
Evotype: Towards the Evolution of Type Stencils
Typefaces are an essential resource employed by graphic designers. The
increasing demand for innovative type design work increases the need for good
technological means to assist the designer in the creation of a typeface. We
present an evolutionary computation approach for the generation of type
stencils to draw coherent glyphs for different characters. The proposed system
employs a Genetic Algorithm to evolve populations of type stencils. The
evaluation of each candidate stencil uses a hill climbing algorithm to search
the best configurations to draw the target glyphs. We study the interplay
between legibility, coherence and expressiveness, and show how our framework
can be used in practice.Comment: EvoMUSART 2018 Best pape
Adaptive mutation using statistics mechanism for genetic algorithms
Copyright @ 2004 Springer-Verla
A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems
Copyright @ Springer-Verlag 2008Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 70431003 and 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, and the National Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01
From evolutionary computation to the evolution of things
Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems
Use of the q-Gaussian mutation in evolutionary algorithms
Copyright @ Springer-Verlag 2010.This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.This work was supported in part by FAPESP and CNPq in Brazil and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/E060722/1 and Grant EP/E060722/2
Self-organizing neural network for adaptive operator selection in evolutionary search
National Research Foundation (NRF) Singapore under its Corp Lab @ University schem
- …