92 research outputs found
Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively
Pneumonitis as A Consequence of (Peg)Interferon-Ribavirin Combination Therapy for Hepatitis C: a Review of the Literature
Combination of peginterferon and ribavirin is the current therapy for chronic hepatitis C infection (HCV). Interstitial pneumonitis is a rare side-effect of HCV therapy and is an important cause of dose reduction or discontinuation, impairing success of antiviral therapy. We performed a review of the literature in order to present diagnostic modalities and possible treatments for pneumonitis and to offer guidelines. We searched for cases where pneumonitis as a side-effect of HCV treatment was documented. First we performed a literature search via PubMed and Web of Science interface and second we searched three drug toxicity databases. We systematically analyzed all case reports with respect to clinical manifestations, type of treatment, and outcome. A literature search revealed 19 articles, containing 25 case descriptions, while we traced 33 cases from the drug toxicity databases. Pneumonitis presented with any of the combination of fever, dyspnea, and cough and can arise with any type of (conventional or pegylated) interferon. Mortality secondary to pneumonitis was seen in 7% of cases, exclusively with peginterferon α-2b. In most cases therapy was discontinued and steroids were started. Interferon-induced pneumonitis during HCV treatment is a severe complication and should be recognized in order to prevent further pulmonary damage and/or death
3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell level
TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells
The family of tripartite-motif (TRIM) proteins are involved in diverse cellular processes, but are often characterized by critical protein–protein interactions necessary for their function. TRIM16 is induced in different cancer types, when the cancer cell is forced to proceed down a differentiation pathway. We have identified TRIM16 as a DNA-binding protein with histone acetylase activity, which is required for the retinoic acid receptor β2 transcriptional response in retinoid-treated cancer cells. In this study, we show that overexpressed TRIM16 reduced neuroblastoma cell growth, enhanced retinoid-induced differentiation and reduced tumourigenicity in vivo. TRIM16 was only expressed in the differentiated ganglion cell component of primary human neuroblastoma tumour tissues. TRIM16 bound directly to cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. TRIM16 reduced cell motility and this required downregulation of vimentin. Retinoid treatment and enforced overexpression caused TRIM16 to translocate to the nucleus, and bind to and downregulate nuclear E2F1, required for cell replication. This study, for the first time, demonstrates that TRIM16 acts as a tumour suppressor, affecting neuritic differentiation, cell migration and replication through interactions with cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells
Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis
Interferon-beta (IFNβ) is used to inhibit disease activity in multiple sclerosis (MS), but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified.he relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70) or poor response (n = 15). Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs).The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual ‘IFN response fingerprint’. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections.MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …