10 research outputs found

    A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study

    Get PDF
    BACKGROUND: This cohort study compared the prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill. METHODS: The relationships between SIG, lactate, anion gap (AG), anion gap albumin-corrected (AG-corrected), base excess or strong ion difference-effective (SIDe), all obtained within the first hour of intensive care unit (ICU) admission, and the hospital mortality of 6878 patients were analysed. The prognostic significance of each acid-base marker, both alone and in combination with the Admission Mortality Prediction Model (MPM0 III) predicted mortality, were assessed by the area under the receiver operating characteristic curve (AUROC). RESULTS: Of the 6878 patients included in the study, 924 patients (13.4 %) died after ICU admission. Except for plasma chloride concentrations, all acid-base markers were significantly different between the survivors and non-survivors. SIG (with lactate: AUROC 0.631, confidence interval [CI] 0.611-0.652; without lactate: AUROC 0.521, 95 % CI 0.500-0.542) only had a modest ability to predict hospital mortality, and this was no better than using lactate concentration alone (AUROC 0.701, 95 % 0.682-0.721). Adding AG-corrected or SIG to a combination of lactate and MPM0 III predicted risks also did not substantially improve the latter's ability to differentiate between survivors and non-survivors. Arterial lactate concentrations explained about 11 % of the variability in the observed mortality, and it was more important than SIG (0.6 %) and SIDe (0.9 %) in predicting hospital mortality after adjusting for MPM0 III predicted risks. Lactate remained as the strongest predictor for mortality in a sensitivity multivariate analysis, allowing for non-linearity of all acid-base markers. CONCLUSIONS: The prognostic significance of SIG was modest and inferior to arterial lactate concentration for the critically ill. Lactate concentration should always be considered regardless whether physiological, base excess or physical-chemical approach is used to interpret acid-base disturbances in critically ill patients

    Venous Thromboembolism After Trauma

    No full text
    Among hospitalized patients, injury represents the single most significant risk factor for the development of venous thromboembolism. Without any form of prophylaxis, either deep venous thrombosis or pulmonary embolism will occur inn up to 55% of patients. In this chapter, we review the incidence, pathogenesis, risk factors, prophylaxis, and treatment of venous thromboembolism following trauma

    Factors Affecting Boar Reproduction, Testis Function, and Sperm Quality

    No full text
    corecore