66 research outputs found

    An efficient auxin-inducible degron system with low basal degradation in human cells

    Get PDF
    Auxin-inducible degron technology allows rapid and controlled protein depletion. However, basal degradation without auxin and inefficient auxin-inducible depletion have limited its utility. We have identified a potent auxin-inducible degron system composed of auxin receptor F-box protein AtAFB2 and short degron minilAA7. The system showed minimal basal degradation and enabled rapid auxin-inducible depletion of endogenous human transmembrane, cytoplasmic and nuclear proteins in 1 h with robust functional phenotypes.Peer reviewe

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy
    corecore