6 research outputs found

    Crystal plasticity and phenomenological approaches for the simulation of deformation behavior in thin copper alloy sheets

    Get PDF
    In the expanding context of device miniaturization, forming processes of ultra thin sheet metals are gaining importance. Numerical simulation of these processes requires accurate material modeling. In this study, both the phenomenological modeling approach and the crystal plasticity finite element method (CPFEM) are considered. Theoretical definitions of both models, numerical implementation as well as their parameter identification procedures are outlined. Subsequently they are compared on a one to one basis, mainly with regards to their ability to predict mechanical responses for a variety of strain loading paths.Agence Nationale de la Recherche, ANR-12-RMNP-0009-0

    Micro-formage de composants Ă  partir de tĂ´les ultra-fines en alliages de cuivre

    Get PDF
    La miniaturisation de nombreux produits et systèmes entraine le développement permanent de micro -systèmes électro mécaniques (M.E.M.S). En raison de leurs taux de production élevés, les procédés de mise en forme demeurent la solution technologique la plus courante pour la fabrication de ces pièces miniatures. Toutefois, en raison des dimensions et épaisseurs (de l'ordre de 100microns ) en jeu, les procédés de micro-formage se révèlent instables et affectés par une grande variabilité. Nos travaux visent à mettre en place une modélisation numérique efficace et précise de ces procédés dans le but de s'en servir comme outil d'optimisation des outillages et procédés. Les deux approches de modélisation développées sont mises en oeuvre sur le cas industriel de pliage des leads d'un boitier électronique LQFP

    Simulation of ultra-thin sheet metal forming using phenomenological and crystal plasticity models

    Get PDF
    Micro-forming of ultra-thin sheet metals raises numerous challenges. In this investigation, the predictions of state-of-the-art crystal plasticity (CP) and phenomenological models are compared in the framework of industrial bending-dominated forming processes. Sheet copper alloys 0.1mm-thick are considered, with more than 20 grains through the thickness. Consequently, both model approaches are valid on theoretical ground. The phenomenological models’ performance was conditioned by the experimental database used for parameter identification. The CP approach was more robust with respect to parameter identification, while allowing for a less flexible description of kinematic hardening, at the cost of finer mesh and specific grain-meshing strategies. The conditions for accurate springback predictions with CP-based models are investigated, in an attempt to bring these models at the robustness level required for industrial application

    Modeling and simulation of ultra thin sheet metals forming processes

    No full text
    La course à la miniaturisation entraine une forte hausse de la demande encomposants aux dimensions submillimétriques et donne un essor considérable aux procédés de micro-formage. Cependant le comportement mécanique des tôles ultrafines, employées dans ces procédés présente des singularités liées à la réduction du nombre de grains. Cette thèse a eu pour objet de mettre en place un outil d’aide à la prédiction du comportement mécanique des tôles ultrafines.Expérimentalement, le comportement de deux alliages de cuivre, le CuBe2 et le CuFe2P, a été caractérisé sous divers types de chargement. Diverses caractéristiques ont été mises en évidence, notamment l’anisotropie de la réponse mécanique, l’effet Bauschinger ou encore ladégradation du module de Young.Afin d’obtenir un cadre de modélisation apte à la description de tôles présentant un comportement plus ou moins homogène, deux approches ont été retenues. La première consiste en une modélisation phénoménologique inspirée des observations macroscopiques. La seconde est une description, en plasticité cristalline, à l’échelle du grain du comportement mécanique, basée sur les mécanismes physiques de déformation. Les modèles retenus ont été intégrés dansles logiciels ABAQUS et SiDoLo dans le formalisme des grandes transformations. Des stratégies d’identification paramétrique des différents modèles sont développées et une analyse comparative de l’impact de l’identification sur les prévisions des modèles est proposée.Enfin les approches développées sont mises en oeuvre sur des procédés industriels et des tests académiques. Une étude sur des facteurs influençant la prédiction du retour élastique estréalisée. Elle a montré qu’une attention particulière doit être portée à la modélisation de l’élasticité.The on-going trend on device miniaturization has increased the demand forminiature parts and boosted micro forming processes. However, the mechanical behavior of ultra-thin sheet metals is subjected to certain peculiarities which are driven from the reduced number of grains in the sheets. The present work aimed to provide a numerical tool for the prediction of the mechanical behavior of ultra-thin sheet metals. The mechanical behavior of two copper alloys, CuBe2 and CuFe2P, was experimentally characterized through several strain paths. Various characteristics have been revealed, such as the anisotropic response, Bauschinger effect and the decrease of the Young modulus.In order to build a modeling frame capable of describing thin metal sheets which exhibit a highly heterogeneous behavior and those whose response is more homogeneous, two modeling approaches were considered. On one hand, a phenomenological model based on the experimental results is chosen. On the other hand, a crystal plasticity based model, which takes into account the physical deformation mechanisms, is adopted. Both models were implementedin ABAQUS and SiDoLo softwares, under the finite strain formalism. Parametric identification strategies are devised and the influence of calibration on models performance is assessed.Ultimately, the modeling approaches were applied to the simulation of industrial processes and academic tests. A numerical study on relevant parameters for the prediction of springback has been performed. The accurate modeling of elasticity proved highly influential

    Modélisation et simulation de procédés de mise en forme de tôles métalliques ultrafines

    No full text
    The on-going trend on device miniaturization has increased the demand forminiature parts and boosted micro forming processes. However, the mechanical behavior of ultra-thin sheet metals is subjected to certain peculiarities which are driven from the reduced number of grains in the sheets. The present work aimed to provide a numerical tool for the prediction of the mechanical behavior of ultra-thin sheet metals. The mechanical behavior of two copper alloys, CuBe2 and CuFe2P, was experimentally characterized through several strain paths. Various characteristics have been revealed, such as the anisotropic response, Bauschinger effect and the decrease of the Young modulus.In order to build a modeling frame capable of describing thin metal sheets which exhibit a highly heterogeneous behavior and those whose response is more homogeneous, two modeling approaches were considered. On one hand, a phenomenological model based on the experimental results is chosen. On the other hand, a crystal plasticity based model, which takes into account the physical deformation mechanisms, is adopted. Both models were implementedin ABAQUS and SiDoLo softwares, under the finite strain formalism. Parametric identification strategies are devised and the influence of calibration on models performance is assessed.Ultimately, the modeling approaches were applied to the simulation of industrial processes and academic tests. A numerical study on relevant parameters for the prediction of springback has been performed. The accurate modeling of elasticity proved highly influential.La course à la miniaturisation entraine une forte hausse de la demande encomposants aux dimensions submillimétriques et donne un essor considérable aux procédés de micro-formage. Cependant le comportement mécanique des tôles ultrafines, employées dans ces procédés présente des singularités liées à la réduction du nombre de grains. Cette thèse a eu pour objet de mettre en place un outil d’aide à la prédiction du comportement mécanique des tôles ultrafines.Expérimentalement, le comportement de deux alliages de cuivre, le CuBe2 et le CuFe2P, a été caractérisé sous divers types de chargement. Diverses caractéristiques ont été mises en évidence, notamment l’anisotropie de la réponse mécanique, l’effet Bauschinger ou encore ladégradation du module de Young.Afin d’obtenir un cadre de modélisation apte à la description de tôles présentant un comportement plus ou moins homogène, deux approches ont été retenues. La première consiste en une modélisation phénoménologique inspirée des observations macroscopiques. La seconde est une description, en plasticité cristalline, à l’échelle du grain du comportement mécanique, basée sur les mécanismes physiques de déformation. Les modèles retenus ont été intégrés dansles logiciels ABAQUS et SiDoLo dans le formalisme des grandes transformations. Des stratégies d’identification paramétrique des différents modèles sont développées et une analyse comparative de l’impact de l’identification sur les prévisions des modèles est proposée.Enfin les approches développées sont mises en oeuvre sur des procédés industriels et des tests académiques. Une étude sur des facteurs influençant la prédiction du retour élastique estréalisée. Elle a montré qu’une attention particulière doit être portée à la modélisation de l’élasticité

    Comparative study of phenomenological and CPFEM based modeling approaches in sheet metal forming: application to micro-forming process simulation

    No full text
    International audienceSimulations of sheet metal forming processes are nowadays of common use in the manufacturing industry and mostly performed with commercial finite-element softwares. Though remarkable improvements on the reliability of these simulations have been achieved over the last decades, the material modeling remains an essential aspect to be upgraded. On one hand, the constitutive laws available in these commercial softwares are phenomenological by nature as they are based on discrete experimental observations. However, industrial forming simulations involve complex straining paths, often leading to material behaviors that are out of the range of the experimental data used for building and fitting these phenomenological models thus limiting the predictiveness of the simulations. These effects are of critical importance especially in the field of micro-forming where parts are obtained from ultra-thin sheets metals whose behavior can be highly heterogeneous as a result of a small number of grains in their thickness, local deformations becoming dominant. On the other hand, Crystal Plasticity Finite Element Models (CPFEM) are based on the physical crystallographic slip that occurs on crystalline material slip planes during straining. This kind of models relate the material behavior to its microstructure, therefore allowing for a deep representation of the physics of deformation. This work aims to establish a one-to-one comparative study of these two modeling approaches. It is highlighted that, contrariwise to phenomenological models, CPFEM are less subordinated to the broadness and the quality of the experimental database used for their adjustment and are expected to describe accurately the material behavior under several strain paths. It is also shown that, provided an efficient and robust implementation taking advantage of parallel computing, CPFEM represent a workable modeling basis for simulations. Then, applications to the simulation of two industrial micro-forming processes with ultra-thin copper based alloys of different thickness to grain size ratios are conducted. The objective is to provide a guidance tool to assess in which cases phenomenological models based simulations are still relevant or when one should rather switch to CPFEM
    corecore