5 research outputs found

    MECHANICALLY STRETCHING FOLDED NANO-PI-STACKS REVEALS PICO-NEWTON ATTRACTIVE FORCES

    No full text
    Picoforce atomic force microscopy (AFM) and specific DNA hybridization have been used to lock onto synthetic nano-pi-stacks, revealing the secrets of thermophilic, albeit weak, pi-pi interactions. A cone-shaped dendron created an appropriate lateral spacing to ensure that most times a single stack was confined between the tip and the substrate, eliminating undesired multi-molecular pulling and greatly simplifying data analysis.X1117sciescopu

    Molecular phylogenetic and biogeographical analysis of Nitraria based on nuclear and chloroplast DNA sequences

    No full text
    Based upon DNA sequences from six plastid regions (rbcL, psbB-psbH, trnL-trnF, rpS16, psbA-trnH, rpS16-trnK) and the internal transcribed spacer (ITS) region of nuclear ribosomal DNA, the phylogenetic relationships in the genus Nitraria and family Nitrariaceae are investigated by using methods of maximum parsimony, maximum likelihood, and Bayesian inference. Our study strongly supports the monophyly of Nitraria. Nitraria can be divided into four parts, namely, the N. sphaerocarpa group, N. retusa group, the N. roborowskii and N. tangutorum group, and a group consisting of N. schoberi, N. komarovii, N. sibirica, and N. billardieri. Ancestral area reconstruction using S-Diva shows that eastern Central Asia is most likely the place of origin, and then dispersals occurred to western Central Asia, Africa, and Australia

    Conducting Polymer Nanomaterials and Their Applications

    No full text
    A paradigm shift takes place in the fabrication of conducting polymers from bulky features with microsize to ultrafine features with nanometer range. Novel conducting polymer nanomaterials require the potential to control synthetic approaches of conducting polymer on molecular and atomic levels. In this article, the synthetic methodology of conducting polymer has been briefly considered with chemical oxidation polymerization and electrochemical polymerization. The recent achievements in the fabrication of conducting polymer nanomaterials have been extensively reviewed with respect to soft template method, hard template method and template-free method. It also details the morphological spectrum of conducting polymer nanomaterials such as nanoparticle, core-shell nanomaterial, hollow nanosphere, nanofiber/nanorod, nanotube, thin film and nanopattern and nanocomposite. In addition, their applications are discussed under nanometer-sized dimension.This work has been financially supported by the Brain Korea 21 program of the Korean Ministry of Education and the Hyperstructured Organic Materials Research Center supported by Korea Science and Engineering Foundation
    corecore