2,168 research outputs found
Topological characteristics of oil and gas reservoirs and their applications
We demonstrate applications of topological characteristics of oil and gas
reservoirs considered as three-dimensional bodies to geological modeling.Comment: 12 page
Large entropy production inside black holes: a simple model
Particles dropped into a rotating black hole can collide near the inner
horizon with enormous energies. The entropy produced by these collisions can be
several times larger than the increase in the horizon entropy due to the
addition of the particles. In this paper entropy is produced by releasing large
numbers of neutrons near the outer horizon of a rotating black hole such that
they collide near the inner horizon at energies similar to those achieved at
the Relativistic Heavy Ion Collider. The increase in horizon entropy is
approximately 80 per dropped neutron pair, while the entropy produced in the
collisions is 160 per neutron pair. The collision entropy is produced inside
the horizon, so this excess entropy production does not violate Bousso's bound
limiting the entropy that can go through the black hole's horizon. The
generalized laws of black hole thermodynamics are obeyed. No individual
observer inside the black hole sees a violation of the second law of
thermodynamicsComment: 10 page
PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS
We consider a standard ARMA process of the form phi(B)X(t) = B(B)Z(t), where the innovations Z(t) belong to the domain of attraction of a stable law, so that neither the Z(t) nor the X(t) have a finite variance. Our aim is to estimate the coefficients of phi and theta. Since maximum likelihood estimation is not a viable possibility (due to the unknown form of the marginal density of the innovation sequence), we adopt the so-called Whittle estimator, based on the sample periodogram of the X sequence. Despite the fact that the periodogram does not, a priori, seem like a logical object to study in this non-L(2) situation, we show that our estimators are consistent, obtain their asymptotic distributions and show that they converge to the true values faster than in the usual L(2) case
Sub-Planckian black holes and the Generalized Uncertainty Principle
The Black Hole Uncertainty Principle correspondence suggests that there could
exist black holes with mass beneath the Planck scale but radius of order the
Compton scale rather than Schwarzschild scale. We present a modified, self-dual
Schwarzschild-like metric that reproduces desirable aspects of a variety of
disparate models in the sub-Planckian limit, while remaining Schwarzschild in
the large mass limit. The self-dual nature of this solution under naturally implies a Generalized Uncertainty Principle
with the linear form . We also
demonstrate a natural dimensional reduction feature, in that the gravitational
radius and thermodynamics of sub-Planckian objects resemble that of -D
gravity. The temperature of sub-Planckian black holes scales as rather than
but the evaporation of those smaller than g is suppressed by
the cosmic background radiation. This suggests that relics of this mass could
provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy
Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-like Universe
We expose the scenarios of primordial baryon-photon plasma evolution within
the framework of the Milne-like universe models. Recently, such models find a
second wind and promise an inflation-free solution of a lot of cosmological
puzzles including the cosmological constant one. Metric tensor perturbations
are considered using the five-vectors theory of gravity admitting the Friedmann
equation satisfied up to some constant. The Cosmic Microwave Background (CMB)
spectrum is calculated qualitatively.Comment: 20 page
Protocol for an observational cohort study investigating personalised medicine for intensification of treatment in people with type 2 diabetes mellitus: the PERMIT study
INTRODUCTION: For people with type 2 diabetes mellitus (T2DM) who require an antidiabetic drug as an add-on to metformin, there is controversy about whether newer drug classes such as dipeptidyl peptidase-4 inhibitors (DPP4i) or sodium-glucose co-transporter-2 inhibitors (SGLT2i) reduce the risk of long-term complications compared with sulfonylureas (SU). There is widespread variation across National Health Service Clinical Commissioning Groups (CCGs) in drug choice for second-line treatment in part because National Institute for Health and Care Excellence guidelines do not specify a single preferred drug class, either overall or within specific patient subgroups. This study will evaluate the relative effectiveness of the three most common second-line treatments in the UK (SU, DPP4i and SGLT2i as add-ons to metformin) and help target treatments according to individual risk profiles. METHODS AND ANALYSIS: The study includes people with T2DM prescribed one of the second-line treatments-of-interest between 2014 and 2020 within the UK Clinical Practice Research Datalink linked with Hospital Episode Statistics and Office of National Statistics. We will use an instrumental variable (IV) method to estimate short-term and long-term relative effectiveness of second-line treatments according to individuals' risk profiles. This method minimises bias from unmeasured confounders by exploiting the natural variation in second-line prescribing across CCGs as an IV for the choice of prescribed treatment. The primary outcome to assess short-term effectiveness will be change in haemoglobin A1c (%) 12 months after treatment initiation. Outcome measures to assess longer-term effectiveness (maximum ~6 years) will include microvascular and macrovascular complications, all-cause mortality and hospital admissions during follow-up. ETHICS AND DISSEMINATION: This study was approved by the Independent Scientific Advisory Committee (20-064) and the London School of Hygiene & Tropical Medicine Research Ethics Committee (21395). Results, codelists and other analysis code will be made available to patients, clinicians, policy-makers and researchers
Discrete conformal maps: boundary value problems, circle domains, Fuchsian and Schottky uniformization
We discuss several extensions and applications of the theory of discretely conformally equivalent triangle meshes (two meshes are considered conformally equivalent if corresponding edge lengths are related by scale factors attached to the vertices). We extend the fundamental definitions and variational principles from triangulations to polyhedral surfaces with cyclic faces. The case of quadrilateral meshes is equivalent to the cross ratio system, which provides a link to the theory of integrable systems. The extension to cyclic polygons also brings discrete conformal maps to circle domains within the scope of the theory. We provide results of numerical experiments suggesting that discrete conformal maps converge to smooth conformal maps, with convergence rates depending on the mesh quality. We consider the Fuchsian uniformization of Riemann surfaces represented in different forms: as immersed surfaces in \mathbb {R}^{3}, as hyperelliptic curves, and as \mathbb {CP}^{1} modulo a classical Schottky group, i.e., we convert Schottky to Fuchsian uniformization. Extended examples also demonstrate a geometric characterization of hyperelliptic surfaces due to Schmutz Schaller
Maternal allergic contact dermatitis causes increased asthma risk in offspring
<p>Abstract</p> <p>Background</p> <p>Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring.</p> <p>Methods</p> <p>BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice.</p> <p>Results</p> <p>Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease.</p> <p>Conclusion</p> <p>Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate) can result in the maternal transmission of asthma risk in mice.</p
Regeneration versus scarring in vertebrate appendages and heart
Injuries to complex human organs, such as the limbs and the heart, result in pathological conditions, for which we often lack adequate treatments. While modern regenerative approaches are based on the transplantation of stem cell-derived cells, natural regeneration in lower vertebrates, such as zebrafish and newts, relies predominantly on the intrinsic plasticity of mature tissues. This property involves local activation of the remaining material at the site of injury to promote cell division, cell migration and complete reproduction of the missing structure. It remains an unresolved question why adult mammals are not equally competent to reactivate morphogenetic programmes. Although organ regeneration depends strongly on the proliferative properties of cells in the injured tissue, it is apparent that various organismic factors, such as innervation, vascularization, hormones, metabolism and the immune system, can affect this process. Here, we focus on a correlation between the regenerative capacity and cellular specialization in the context of functional demands, as illustrated by appendages and heart in diverse vertebrates. Elucidation of the differences between homologous regenerative and non-regenerative tissues from various animal models is essential for understanding the applicability of lessons learned from the study of regenerative biology to clinical strategies for the treatment of injured human organs
The persistence landscape and some of its properties
Persistence landscapes map persistence diagrams into a function space, which
may often be taken to be a Banach space or even a Hilbert space. In the latter
case, it is a feature map and there is an associated kernel. The main advantage
of this summary is that it allows one to apply tools from statistics and
machine learning. Furthermore, the mapping from persistence diagrams to
persistence landscapes is stable and invertible. We introduce a weighted
version of the persistence landscape and define a one-parameter family of
Poisson-weighted persistence landscape kernels that may be useful for learning.
We also demonstrate some additional properties of the persistence landscape.
First, the persistence landscape may be viewed as a tropical rational function.
Second, in many cases it is possible to exactly reconstruct all of the
component persistence diagrams from an average persistence landscape. It
follows that the persistence landscape kernel is characteristic for certain
generic empirical measures. Finally, the persistence landscape distance may be
arbitrarily small compared to the interleaving distance.Comment: 18 pages, to appear in the Proceedings of the 2018 Abel Symposiu
- …