43,942 research outputs found
Can't touch this: the first-person perspective provides privileged access to predictions of sensory action outcomes.
RCUK Open Access funded. ESRC ES/J019178/1Previous studies have shown that viewing others in pain activates cortical somatosensory processing areas and facilitates the detection of tactile targets. It has been suggested that such shared representations have evolved to enable us to better understand the actions and intentions of others. If this is the case, the effects of observing others in pain should be obtained from a range of viewing perspectives. Therefore, the current study examined the behavioral effects of observed grasps of painful and nonpainful objects from both a first- and third-person perspective. In the first-person perspective, a participant was faster to detect a tactile target delivered to their own hand when viewing painful grasping actions, compared with all nonpainful actions. However, this effect was not revealed in the third-person perspective. The combination of action and object information to predict the painful consequences of another person's actions when viewed from the first-person perspective, but not the third-person perspective, argues against a mechanism ostensibly evolved to understand the actions of others
Super-hard Superconductivity
We present a study of the magnetic response of Type-II superconductivity in
the extreme pinning limit, where screening currents within an order of
magnitude of the Ginzburg-Landau depairing critical current density develop
upon the application of a magnetic field. We show that this "super-hard" limit
is well approximated in highly disordered, cold drawn, Nb and V wires whose
magnetization response is characterized by a cascade of Meissner-like phases,
each terminated by a catastrophic collapse of the magnetization. Direct
magneto-optic measurements of the flux penetration depth in the virgin
magnetization branch are in excellent agreement with the exponential model in
which J_c(B)=J_co exp(-B/B_o), where J_co~5x10^6 A/cm^2 for Nb. The
implications for the fundamental limiting hardness of a superconductor are
discussed.Comment: corrected Fig.
Fermi-liquid effects in the gapless state of marginally thin superconducting films
We present low temperature tunneling density-of-states measurements in Al
films in high parallel magnetic fields. The thickness range of the films, t=6-9
nm, was chosen so that the orbital and Zeeman contributions to their parallel
critical fields were comparable. In this quasi-spin paramagnetically limited
configuration, the field produces a significant suppression of the gap, and at
high fields the gapless state is reached. By comparing measured and calculated
tunneling spectra we are able to extract the value of the antisymmetric
Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density
dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure
Asymmetric Avalanches in the Condensate of a Zeeman-limited Superconductor
We report the non-equilibrium behavior of disordered superconducting Al films
in high Zeeman fields. We have measured the tunneling density of states of the
films through the first-order Zeeman critical field transition. We find that
films with sheet resistances of a few hundred ohms exhibit large avalanche-like
collapses of the condensate on the superheating branch of the critical field
hysteresis loop. In contrast, the transition back into the superconducting
phase (i.e., along the supercooling branch) is always continuous. The fact that
the condensate follows an unstable trajectory to the normal state suggests that
the order parameter in the hysteretic regime is not homogeneous.Comment: 5 pages, 5 figures, to appear in PR
Coulomb Gap: How a Metal Film Becomes an Insulator
Electron tunneling measurements of the density of states (DOS) in ultra-thin
Be films reveal that a correlation gap mediates their insulating behavior. In
films with sheet resistance the correlation singularity appears
as the usual perturbative zero bias anomaly (ZBA) in the DOS. As R is
increased further, however, the ZBA grows and begins to dominate the DOS
spectrum. This evolution continues until a non-perturbative
Efros-Shklovskii Coulomb gap spectrum finally emerges in the highest R films.
Transport measurements of films which display this gap are well described by a
universal variable range hopping law .Comment: 4 figure
On the fourth root prescription for dynamical staggered fermions
With the aim of resolving theoretical issues associated with the fourth root
prescription for dynamical staggered fermions in Lattice QCD simulations, we
consider the problem of finding a viable lattice Dirac operator D such that
(det D_{staggered})^{1/4} = det D. Working in the flavour field representation
we show that in the free field case there is a simple and natural candidate D
satisfying this relation, and we show that it has acceptable locality behavior:
exponentially local with localisation range vanishing ~ (a/m)^{1/2} for lattice
spacing a -> 0. Prospects for the interacting case are also discussed, although
we do not solve this case here.Comment: 29 pages, 2 figures; some revision and streamlining of the
discussions; results unchanged; to appear in PR
- âŚ