14 research outputs found

    Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases

    Get PDF
    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (A?). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that A? is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of A? in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of A?. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance

    A Method to Visualize the Nanoscopic Morphology of Astrocytes In Vitro and In Situ

    No full text
    In recent years it has become apparent that astroglia are not only essential players in brain development, homeostasis, and metabolic support but are also important for the formation and regulation of synaptic circuits. Fine astrocytic processes that can be found in the vicinity of synapses undergo considerable structural plasticity associated with age- and use-dependent changes in neural circuitries. However, due to the extraordinary complex, essentially nanoscopic morphology of astroglia, the underlying cellular mechanisms remain poorly understood.Here we detail a super-resolution microscopy approach, based on the single-molecule localisation microscopy (SMLM) technique direct stochastic optical reconstruction microscopy (dSTORM) to visualize astroglial morphology on the nanoscale. This approach enables visualization of key morphological changes that occur in nanoscopic astrocyte processes, whose characteristic size falls below the diffraction limit of conventional optical microscopy

    Evolution of genes and genomes on the Drosophila phylogeny.

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Systemic and Ocular Associations of Retinal Vein Occlusions

    No full text
    corecore